Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892064

RESUMO

Hypertrophic cardiomyopathy (HCM) is a heart condition characterized by cellular and metabolic dysfunction, with mitochondrial dysfunction playing a crucial role. Although the direct relationship between genetic mutations and mitochondrial dysfunction remains unclear, targeting mitochondrial dysfunction presents promising opportunities for treatment, as there are currently no effective treatments available for HCM. This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Searches were conducted in databases such as PubMed, Embase, and Scopus up to September 2023 using "MESH terms". Bibliographic references from pertinent articles were also included. Hypertrophic cardiomyopathy (HCM) is influenced by ionic homeostasis, cardiac tissue remodeling, metabolic balance, genetic mutations, reactive oxygen species regulation, and mitochondrial dysfunction. The latter is a common factor regardless of the cause and is linked to intracellular calcium handling, energetic and oxidative stress, and HCM-induced hypertrophy. Hypertrophic cardiomyopathy treatments focus on symptom management and complication prevention. Targeted therapeutic approaches, such as improving mitochondrial bioenergetics, are being explored. This includes coenzyme Q and elamipretide therapies and metabolic strategies like therapeutic ketosis. Understanding the biomolecular, genetic, and mitochondrial mechanisms underlying HCM is crucial for developing new therapeutic modalities.


Assuntos
Cardiomiopatia Hipertrófica , Mutação , Oxirredução , Transdução de Sinais , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
Antioxid Redox Signal ; 40(4-6): 250-271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37597204

RESUMO

Significance: Cancer is a complex and heterotypic structure with a spatial organization that contributes to challenges in therapeutics. Enzymes associated with producing the gasotransmitter hydrogen sulfide (H2S) are differentially expressed in tumors. Indeed, critical and paradoxical roles have been attributed to H2S in cancer-promoting characteristics by targeting both cancer cells and their milieu. This review focuses on the evidence and knowledge gaps of H2S on the tumor redox microenvironment and the pharmacological effects of H2S donors on cancer biology. Recent Advances: Endogenous and pharmacological concentrations of H2S evoke different effects on the same cell type: physiological H2S concentrations have been associated with tumor development and progression. In contrast, pharmacological concentrations have been associated with anticancer effects. Critical Issues: The exact threshold between the promotion and inhibition of tumorigenesis by H2S is largely unknown. The main issues covered in this review include H2S-modulated signaling pathways that are critical for cancer cells, the potential effects of H2S on cellular components of the tumor microenvironment, temporal modulation of H2S in promoting or inhibiting tumor progression (similar to observed for inflammation), and pharmacological agents that modulate H2S and which could play a role in antineoplastic therapy. Future Directions: Given the complexity and heterogeneity of tumor composition, mechanistic studies on context-dependent pharmacological effects of H2S donors for cancer therapy are necessary. These studies must determine the critical signaling pathways and the cellular components involved to allow advances in the rational use of H2S donors as antineoplastic agents. Antioxid. Redox Signal. 40, 250-271.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Neoplasias , Humanos , Sulfeto de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Gasotransmissores/metabolismo , Transdução de Sinais , Carcinogênese , Microambiente Tumoral
3.
FEBS J ; 291(4): 778-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985387

RESUMO

We have studied the reduction reactions of two cytosolic human peroxiredoxins (Prx) in their disulfide form by three thioredoxins (Trx; two human and one bacterial), with the aim of better understanding the rate and mechanism of those reactions, and their relevance in the context of the catalytic cycle of Prx. We have developed a new methodology based on stopped-flow and intrinsic fluorescence to study the bimolecular reactions, and found rate constants in the range of 105 -106 m-1 s-1 in all cases, showing that there is no marked kinetic preference for the expected Trx partner. By combining experimental findings and molecular dynamics studies, we found that the reactivity of the nucleophilic cysteine (CN ) in the Trx is greatly affected by the formation of the Prx-Trx complex. The protein-protein interaction forces the CN thiolate into an unfavorable hydrophobic microenvironment that reduces its hydration and results in a remarkable acceleration of the thiol-disulfide exchange reactions by more than three orders of magnitude and also produces a measurable shift in the pKa of the CN . This mechanism of activation of the thiol disulfide exchange may help understand the reduction of Prx by alternative reductants involved in redox signaling.


Assuntos
Peroxirredoxinas , Tiorredoxinas , Humanos , Tiorredoxinas/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Dissulfetos/química
4.
Free Radic Biol Med ; 207: 200-211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473875

RESUMO

The theory that aging is driven by the damage produced by reactive oxygen species (ROS) derived from oxidative metabolism dominated geroscience studies during the second half of the 20th century. However, increasing evidence that ROS also plays a key role in the physiological regulation of numerous processes through the reversible oxidation of cysteine residues in proteins, has challenged this notion. Currently, the scope of redox signaling has reached proteomic dimensions through mass spectrometry techniques. Here, we perform a comprehensive bioinformatics analysis of cysteine oxidation changes during mouse brain aging, using the quantitative data provided in the Oximouse dataset. Interestingly, our unbiased analysis identified hundreds of putative cysteine redox switches covering several pathways previously associated with aging. These include the ubiquitin-proteasome pathway and one-carbon metabolism (folate cycle, methionine cycle, transsulfuration and polyamine pathways). Surprisingly, cysteine oxidation changes are enriched in synaptic proteins in a highly asymmetric distribution: while postsynaptic proteins tend to increase cysteine oxidation with age, the opposite occurs for presynaptic proteins. Additionally, cysteine oxidation changes during aging are associated with proteins involved in the regulation of the mitochondrial transition pore opening and synaptic calcium homeostasis. Our analysis reinforces the concept that brain aging is associated with selective changes in the oxidation state of key proteins, rather than an overall trend toward increased oxidation. Also, we provide a prioritized list of specific cysteine residues with putative impact in aging processes for future experimental validation.


Assuntos
Disfunção Cognitiva , Estresse Oxidativo , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cisteína/metabolismo , Proteômica/métodos , Envelhecimento/metabolismo , Proteínas/metabolismo , Oxirredução , Encéfalo/metabolismo
5.
Curr Opin Chem Biol ; 76: 102355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37385138

RESUMO

Peroxiredoxins (Prx), thiol-dependent peroxidases, were first identified as H2O2 detoxifiers, and more recently as H2O2 sensors, intermediates in redox-signaling pathways, metabolism modulators, and chaperones. The multifaceted nature of Prx is not only dependent on their peroxidase activity but also strongly associated with specific protein-protein interactions that are being identified, and where the Prx oligomerization dynamics plays a role. Their oxidation by a peroxide substrate forms a sulfenic acid that opens a route to channel the redox signal to diverse protein targets. Recent research underscores the importance of different Prx isoforms in the cellular processes behind disease development with potential therapeutic applications.


Assuntos
Peróxido de Hidrogênio , Peroxirredoxinas , Peroxirredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos/metabolismo , Antioxidantes , Oxirredução , Biologia
6.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107320

RESUMO

Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.

7.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36378644

RESUMO

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Assuntos
Citocromos c , Heme , Animais , Sequência de Aminoácidos , Anticorpos Monoclonais , Citocromos c/química , Heme/química , Hibridomas , Oxirredução , Melanoma Experimental , Camundongos
8.
Front Aging Neurosci ; 14: 1003721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408110

RESUMO

Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aß peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aß production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aß. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740009

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.

11.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204238

RESUMO

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

12.
Mol Cell Biochem ; 477(3): 663-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988854

RESUMO

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 µg/ml of BBE for 4 h and maintained in the presence of 100 µM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Mioblastos Cardíacos/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Extratos Vegetais/química , Ratos
13.
Antioxid Redox Signal ; 36(13-15): 953-968, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34409856

RESUMO

Significance: Altered plasma triglyceride metabolism and changes in dietary fatty acid types and levels are major contributors to the development of metabolic and cardiovascular diseases such as fatty liver disease, obesity, diabetes, and atherosclerosis. Lipid accumulation in visceral adipose tissue and ectopically in other organs, as well as lipid-induced redox imbalance, is connected to mitochondrial dysfunction in a range of oxidative stress-associated metabolic and degenerative disorders. Recent Advances: Successful mitochondrial adaptive responses in the context of hypertriglyceridemia and dietary bioactive polyunsaturated fatty acids contribute to increase body energy expenditure and reduce oxidative stress, thus allowing several cell types to cope with metabolic challenges and stresses. These responses include mitochondrial redox signaling, mild uncoupling, and changes in network dynamic behavior. Critical Issues: Mitochondrial bioenergetics and redox changes in a lipid overload context are relatively well characterized. However, the turning point between adaptive and maladaptive mitochondrial responses remains a critical issue to be elucidated. In addition, the relationship between changes in fusion/fission machinery and mitochondrial function is less well understood. Future Directions: The effective mitochondrial responses described here support the research for new drug design and diet or nutraceutical formulations targeting mitochondrial mild uncoupling and effective quality control as putative strategies for cardiometabolic diseases. Antioxid. Redox Signal. 36, 953-968.


Assuntos
Hipertrigliceridemia , Mitocôndrias , Respiração Celular , Metabolismo Energético , Humanos , Hipertrigliceridemia/metabolismo , Lipídeos/farmacologia , Mitocôndrias/metabolismo
14.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(4): 430-436, Oct.-Dec. 2021. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1350823

RESUMO

ABSTRACT Background: In Philadelphia chromosome-negative myeloproliferative neoplasm (MPN) models, reactive oxygen species (ROS) are elevated and have been implicated in genomic instability, JAK2/STAT signaling amplification, and disease progression. Although the potential effects of ROS on the MPN phenotype, the effects of ruxolitinib treatment on ROS regulation have been poorly explored. Herein, we have reported the impact of ruxolitinib on redox signaling transcriptional network, and the effects of diphenyleneiodonium (DPI), a pan NOX inhibitor, in JAK2V617F-driven cellular models. Method: Redox signaling-related genes were investigated in SET2 cells upon ruxolitinib treatment by RNA-seq (GEO accession GSE69827). SET2 and HEL cells, which represent JAK2V617F-positive MPN cellular models with distinct sensitivity to apoptosis induced by ruxolitinib, were used. Cell viability was evaluated by MTT, apoptosis by annexin V/PI and flow cytometry, and cell signaling by quantitative PCR and Western blot. Main results: Ruxolitinib impacted on a network composed of redox signaling-related genes, and DUOX1 and DUOX2 were identified as potential modulators of ruxolitinib response. In SET2 and HEL cells, DPI reduced cell viability and, at low doses, it significantly potentiated ruxolitinib-induced apoptosis. In the molecular scenario, DPI inhibited STAT3, STAT5 and S6 ribosomal protein phosphorylation and induced PARP1 cleavage in JAK2V617F-positive cells. DPI combined with ruxolitinib increased PARP1 cleavage in SET2 cells and potentiated ruxolitinib-reduced STAT3, STAT5 and S6 ribosomal protein in HEL cells. Conclusion: Our study reveals a potential adaptation mechanism for resistance against ruxolitinib by transcriptionally reprogramming redox signaling in JAK2V617F cells and exposes redox vulnerabilities with therapeutic value in MPN cellular models.


Assuntos
Janus Quinase 2 , Doenças Mieloproliferativas-Mielodisplásicas/tratamento farmacológico , Oxirredução , NADPH Oxidases , Oxidases Duais , Transtornos Mieloproliferativos
15.
Metab Brain Dis ; 36(8): 2377-2391, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338973

RESUMO

Chlorpyrifos (CPF), an insecticide, induces pro-oxidant, pro-inflammatory, and pro-apoptotic effects in animal cells. Contamination with CPF occurs not only in farms, since CPF is found in the food consumed in homes. Recently, it was demonstrated that CPF affects the mitochondria, inhibiting components of the electron transfer chain (ETC), causing loss of mitochondrial membrane potential (MMP), and reducing the synthesis of adenosine triphosphate (ATP) by the Complex V. Pinocembrin (PB) is found in propolis and exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. PB is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2), which is a major transcription factor controlling the expression of heme oxygease-1 (HO-1), among others. In the present work, we investigated whether PB would be able to prevent the mitochondrial and immune dysfunctions in the human neuroblastoma SH-SY5Y cells exposed to CPF. PB was tested at 1-25 µM for 4 h before the administration of CPF at 100 µM for additional 24 h. We found that PB prevented the CPF-induced inhibition of ETC, loss of MMP, and decline in the ATP synthesis. PB also promoted anti-inflammatory actions in this experimental model. Silencing of Nrf2 or inhibition of HO-1 suppressed the PB-induced effects in the CPF-challenged cells. Thus, PB promoted beneficial effects by a mechanism dependent on the Nrf2/HO-1/CO + BR axis in the CPF-treated cells.


Assuntos
Clorpirifos , Flavanonas , Heme Oxigenase-1 , Linhagem Celular Tumoral , Sobrevivência Celular , Clorpirifos/toxicidade , Regulação para Baixo , Flavanonas/farmacologia , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
16.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439810

RESUMO

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Apoptose/genética , Ácidos Graxos/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia/genética , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
J Biol Chem ; 297(2): 100950, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252456

RESUMO

Mammalian cells synthesize H2S from sulfur-containing amino acids and are also exposed to exogenous sources of this signaling molecule, notably from gut microbes. As an inhibitor of complex IV in the electron transport chain, H2S can have a profound impact on metabolism, suggesting the hypothesis that metabolic reprogramming is a primary mechanism by which H2S signals. In this study, we report that H2S increases lipogenesis in many cell types, using carbon derived from glutamine rather than from glucose. H2S-stimulated lipid synthesis is sensitive to the mitochondrial NAD(P)H pools and is enabled by reductive carboxylation of α-ketoglutarate. Lipidomics analysis revealed that H2S elicits time-dependent changes across several lipid classes, e.g., upregulating triglycerides while downregulating phosphatidylcholine. Direct analysis of triglyceride concentration revealed that H2S induces a net increase in the size of this lipid pool. These results provide a mechanistic framework for understanding the effects of H2S on increasing lipid droplets in adipocytes and population studies that have pointed to a positive correlation between cysteine (a substrate for H2S synthesis) and fat mass.


Assuntos
Glutamina , Sulfeto de Hidrogênio , NAD , Metabolismo Energético , Lipogênese , Mitocôndrias/metabolismo , Transdução de Sinais
18.
Antioxidants (Basel) ; 10(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808211

RESUMO

Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.

19.
Metab Brain Dis ; 36(4): 523-543, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33580861

RESUMO

Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/fisiologia , Fenilcetonúrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
20.
Hematol Transfus Cell Ther ; 43(4): 430-436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32962959

RESUMO

BACKGROUND: In Philadelphia chromosome-negative myeloproliferative neoplasm (MPN) models, reactive oxygen species (ROS) are elevated and have been implicated in genomic instability, JAK2/STAT signaling amplification, and disease progression. Although the potential effects of ROS on the MPN phenotype, the effects of ruxolitinib treatment on ROS regulation have been poorly explored. Herein, we have reported the impact of ruxolitinib on redox signaling transcriptional network, and the effects of diphenyleneiodonium (DPI), a pan NOX inhibitor, in JAK2V617F-driven cellular models. METHOD: Redox signaling-related genes were investigated in SET2 cells upon ruxolitinib treatment by RNA-seq (GEO accession GSE69827). SET2 and HEL cells, which represent JAK2V617F-positive MPN cellular models with distinct sensitivity to apoptosis induced by ruxolitinib, were used. Cell viability was evaluated by MTT, apoptosis by annexin V/PI and flow cytometry, and cell signaling by quantitative PCR and Western blot. MAIN RESULTS: Ruxolitinib impacted on a network composed of redox signaling-related genes, and DUOX1 and DUOX2 were identified as potential modulators of ruxolitinib response. In SET2 and HEL cells, DPI reduced cell viability and, at low doses, it significantly potentiated ruxolitinib-induced apoptosis. In the molecular scenario, DPI inhibited STAT3, STAT5 and S6 ribosomal protein phosphorylation and induced PARP1 cleavage in JAK2V617F-positive cells. DPI combined with ruxolitinib increased PARP1 cleavage in SET2 cells and potentiated ruxolitinib-reduced STAT3, STAT5 and S6 ribosomal protein in HEL cells. CONCLUSION: Our study reveals a potential adaptation mechanism for resistance against ruxolitinib by transcriptionally reprogramming redox signaling in JAK2V617F cells and exposes redox vulnerabilities with therapeutic value in MPN cellular models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA