Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809950

RESUMO

In this research we evaluated the use of recycled fine mortar aggregate (RFMA) as a fine aggregate for new masonry mortar creation. The pre-wetting effect on the aggregate before creating the mixture was analyzed as a method to reduce its absorption potential. A control mixture of conventional mortar and two groups of recycled mortars were designed with a partial replacement of natural sand by RFMA (pre-wetted and not pre-wetted) performed in different proportions. The results established that the pre-wetting process allows a reduction in the amount of water required during the creation of new mixtures, regulating the water/cement (W/C) ratio and improving the properties of recycled mortars such as air content, fresh and hardened densities, and compressive and adhesive strength for all substitution levels. Mortar made with a 20% substitution and pre-wetted until it was at 67% of its absorption capacity displayed adhesive values higher than the ones shown by the reference mortar. The pre-wetting process proves to be an easy performance technique; it is inexpensive, environmentally friendly, and the most valuable fact is that specialized equipment is not necessarily needed. This process is the most profitable option for improving RFMA exploitation and reuse.

2.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455646

RESUMO

Recycling is an important habit to avoid waste. This paper evaluates the performance of masonry mortar, elaborated by replacing natural sand with recycled fine aggregate (RFA) obtained from mortar. Five families of mixtures were prepared with different replacement proportions: 20%, 40%, 60%, and 100%. A 1:4 volumetric cement-to-aggregate ratio was used for all mixtures by experimentally adjusting the amount of water to achieve the same consistency of 175 ± 5 mm. The effects of the following procedures were analyzed: (1) the use of a deconstruction technique to collect the RFA, (2) pre-wetting of the aggregates, and (3) the use of a commercial plasticizer. Experimental results show that it is possible to use this type of recycled fine aggregate as a substitute for natural sand by up to 60% in the manufacture of masonry mortar without significantly affecting its properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA