RESUMO
The artificial neural networks (ANNs)-based model has been used to predict the compressive strength of concrete, assisting in creating recycled aggregate concrete mixtures and reducing the environmental impact of the construction industry. Thus, the present study examines the effects of the training algorithm, topology, and activation function on the predictive accuracy of ANN when determining the compressive strength of recycled aggregate concrete. An experimental database of compressive strength with 721 samples was defined considering the literature. The database was used to train, validate, and test the ANN-based models. Altogether, 240 ANNs were trained, defined by combining three training algorithms, two activation functions, and topologies with a hidden layer containing 1-40 neurons. The ANN with a single hidden layer including 28 neurons, trained with the Levenberg-Marquardt algorithm and the hyperbolic tangent function, achieved the best level of accuracy, with a coefficient of determination equal to 0.909 and a mean absolute percentage error equal to 6.81%. Furthermore, the results show that it is crucial to avoid the use of overly complex models. Excessive neurons can lead to exceptional performance during training but poor predictive ability during testing.
RESUMO
Recycled aggregate concrete (RAC) includes recycled concrete aggregates (coarse and/or fine) as substitutes for natural aggregates as an approach to achieving a circular economy. Some concerns remain about its performance, including the carbonation resistance. The higher porosity of recycled concrete aggregates is logically a disadvantage, but the analysis must address many other factors. This paper provides an in-depth examination of recent advances in the carbonation performance of RAC. The emphasis is on factors that influence CO2 diffusion and the carbonation rate, e.g., the replacement ratio, source concrete quality, interfacial transition zone features, residual portlandite content, and porosity. The influences of previous treatments, combined action with supplementary cementitious materials, and loading conditions are also discussed. The replacement ratio has a significant impact on the carbonation performance of concrete, but it is also dependent on other factors. During carbonation, the physical effects of the porosity of the aggregate and the physical-chemical effects of the portlandite content in the adhered mortar are particularly important. The residual portlandite is especially significant because it is the primary hydration product responsible for the alkaline reserve for carbonation and the potential pozzolanic reaction, which are per se competing factors that determine the carbonation rate.
RESUMO
Construction and demolition activities consume large amounts of natural resources, generating 4.5 bi tons of solid waste/year, called construction and demolition waste (C&DW) and other wastes, such as ceramic, polyethylene terephthalate (PET), glass, and slag. Furthermore, around 32 bi tons of natural aggregate (NA) are extracted annually. In this scenario, replacing NA with recycled aggregate (RA) from C&DW and other wastes can mitigate environmental problems. We review the use of RA for concrete production and draw the main challenges and outlook. RA reduces concrete's fresh and hardened performance compared to NA, but these reductions are often negligible when the replacement levels are kept up to 30%. Furthermore, we point out efficient strategies to mitigate these performance reductions. Efforts must be spent on improving the efficiency of RA processing and the international standardization of RA.
RESUMO
The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates' performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.
RESUMO
Recently, concerns have been rising about the impact of increasing the depletion of natural resources and the relevant generation of construction and demolition waste, on the environment and economy. Therefore, several efforts have been made to promote sustainable efficiency in the construction industry and the use of recycled aggregates derived from concrete debris for new concrete mixtures (leading to so-called recycled aggregate concrete, RAC) is one of the most promising solutions. Unfortunately, there are still gaps in knowledge regarding the durability performances of RAC. In this study, we investigate durability of structural RAC subjected to wet-dry cycles. We analyze the results of an experimental campaign aimed at evaluating the degradation process induced by wetting and drying cycles on the key physical and mechanical properties of normal- and high-strength concrete, produced with coarse recycled concrete aggregates (RCAs) of different sizes and origins. On the basis of the results we propose a degradation law for wetting and drying cycles, which explicitly makes a possible correlation between the initial concrete porosity, directly related to the specific properties of the RCAs and the resulting level of damage obtained in RAC samples.
RESUMO
Currently it is necessary to find alternatives towards a sustainable construction, in order to optimize the management of natural resources. Thus, using recycled fine aggregate (RFA) is a viable recycling option for the production of new cementitious materials. In addition, the use of polymeric microfibers would cause an increase in the properties of these materials. In this work, mortars were studied with 25% of RFA and an addition of polyacrylonitrile PAN microfibers of 0.05% in cement weight. The microfibers were obtained by the electrospinning method, which had an average diameter of 1.024 µm and were separated by means of a homogenizer to be added to the mortar. Cementing materials under study were evaluated for compressive strength, flexural strength, total porosity, effective porosity and capillary absorption, resistance to water penetration, sorptivity and carbonation. The results showed that using 25% of RFA causes decreases mechanical properties and durability, but adding PAN microfibers in 0.05% caused an increase of 2.9% and 30.8% of compressive strength and flexural strength respectively (with respect to the reference sample); a decrease in total porosity of 5.8% and effective porosity of 7.4%; and significant decreases in capillary absorption (approximately 23.3%), resistance to water penetration (25%) and carbonation (14.3% after 28 days of exposure). The results showed that the use of PAN microfibers in recycled mortars allowed it to increase the mechanical properties (because they increase the tensile strength), helped to fill pores or cavities and this causes them to be mortars with greater durability. Therefore, the use of PAN microfibers as a reinforcement in recycled cementitious materials would be a viable option to increase their applications.