Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemistry ; 28(69): e202202294, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074001

RESUMO

[3+2] cycloadditions of nitroolefins have emerged as a selective and catalyst-free alternative for the synthesis of 1,2,3-triazoles from azides. We describe mechanistic studies into the cycloaddition/rearomatization reaction sequence. DFT calculations revealed a rate-limiting cycloaddition step proceeding via an asynchronous TS with high kinetic selectivity for the 1,5-triazole. Kinetic studies reveal a second-order rate law, and 13 C kinetic isotopic effects at natural abundance were measured with a significant normal effect at the conjugated olefinic centers of 1.0158 and 1.0216 at the α and ß-carbons of ß-nitrostyrene. Distortion/interaction-activation strain and energy decomposition analyses revealed that the major regioisomeric pathway benefits from an earlier and less-distorted TS, while intermolecular interaction terms dominate the preference for 1,5- over 1,4-cycloadducts. In addition, the major regioisomer also has more favorable electrostatic and dispersion terms. Additionally, while static DFT calculations suggest a concerted but highly asynchronous Ei-type HNO2 elimination mechanism, quasiclassical direct-dynamics calculations reveal the existence of a dynamic intermediate.


Assuntos
Alcenos , Azidas , Cinética , Reação de Cicloadição , Catálise , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA