RESUMO
We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.
RESUMO
We study the transport properties of HgTe quantum wells with critical well thickness, where the band gap is closed and the low energy spectrum is described by a single Dirac cone. In this work, we examined both macroscopic and micron-sized (mesoscopic) samples. In micron-sized samples, we observe a magnetic-field-induced quantized resistance (~h/2e) at Landau filling factor ν=0, corresponding to the formation of helical edge states centered at the charge neutrality point (CNP). In macroscopic samples, the resistance near a zero Landau level (LL) reveals strong oscillations, which we attribute to scattering between the edge ν=0 state and bulk ν≠0 hole LL. We provide a model taking an empirical approach to construct a LL diagram based on a reservoir scenario, formed by the heavy holes.
RESUMO
We show here that potential barriers, applied to armchair nanoribbons, induce a hexagonal effective lattice, polarized in pseudospin on the sides of the barriers system, which has an effective unit cell greater than that of infinite graphene (pseudospin superstructure). This superstructure is better defined with the increase of the barrier potential, until a transport gap is generated. The superstructure, as well as the induced gap, are fingerprints of Kekulé distortion in graphene, so here we report an analogous effect in nanoribbons. These effects are associated with a breakdown of the chiral correlation. As a consequence, an effective zigzag edge is induced, which controls the electronic transport instead of the original armchair edge. With this, confinement effects (quasi-bound states) and couplings (splittings), both of chiral origin (decorrelation between chiral counterparts), are observed in the conductance as a function of the characteristics of the applied barriers and the number of barriers used. In general, the Dirac-like states in the nanoribbon can form quasi-bound states within potential barriers, which explains the Klein tunneling in armchair nanoribbons. On the other hand, for certain conditions of the barriers (widthLand potentialV) and the energy (E) of the quasi-particle, quasi-bound states between the barriers can be generated. These two types of confinement would be generating tunneling peaks, which are mixed in conductance. In this work we make a systematic study of conductance as a function ofE,LandVfor quantum dots systems in graphene nanoribbons, to determine fingerprints of chirality: line shapes and behaviors, associated with each of these two contributions. With these fingerprints of chirality we can detect tunneling through states within the barriers and differentiate these from tunneling through states formed between the barriers or quantum dot. With all this we propose a technique, from conductance, to determine the spatial region that the state occupies, associated with each tunneling peak.
RESUMO
The thermoelectric response of 80 nm-thick strained HgTe films of a three-dimensional topological insulator (3D TI) has been studied experimentally. An ambipolar thermopower is observed where the Fermi energy moves from conducting to the valence bulk band. The comparison between theory and experiment shows that the thermopower is mostly due to the phonon drag contribution. In the region where the 2D Dirac electrons coexist with bulk hole states, the Seebeck coefficient is modified due to 2D electron-3D hole scattering.
RESUMO
The mechanism behind the high throughput rate in K+channels is still an open problem. However, recent simulations have shown that the passage of potassium through the K+channel core, the so-called selectivity filter (SF), is water-free against models where the strength of Coulomb repulsion freezes ions conduction. Thus, it has been suggested that coherent quantum hopping might be relevant in mediating ion conduction. Within the quantum approach and the hypothesis of desolvated ions along the pathway, we start with several particles in a source to see how they go across a SF, modeled by a linear chain of sites, to be collected in a drain. We show that the average SF occupancy is three ions, and the ion transfer rate is â¼108ions s-1, results which agree with the recent findings in the literature.
RESUMO
The cloaking effect of electronic states was only reported in bilayer graphene. Here in this work we show that this effect can also be induced in armchair graphene nanoribbons (AGNRs), by potential barriers that modulate the chirality property of the system (correlation between pseudospins). These barriers manipulate the chirality and generates pseudospin polarizations on the sides of the barrier, which leaves spatial regions in evidence, in which states behave differently. In AGNRs the extended states (ES), associated with the tunneling of Klein, use only some sites in the nanoribbon lattice (sublattice of ES). On the other hand, the barrier applied in the nanoribbon, induces states totally localized within the region of the barrier, these states use only the sites not used by the sublattice of ES. The localized states remain invisible for electronic transport for all the energies and characteristics of the barrier in the region of the first effective transport band, the same as the states are changing. This electronic cloaking effect can be suppressed by the application of a magnetic field, detecting in the conductance the previously invisible states in the form of Fano resonances. We discuss here the possibility of using this cloaking effect to generate mechanisms that can hide information or to activate hidden system effects.
RESUMO
In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.