Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 477(2248): 20200606, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35153552

RESUMO

In the context of the de Broglie-Bohm pilot-wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium-thus violating the Born rule-usually relax over time to the expected |ψ|2 distribution on a coarse-grained level. We analyse the relaxation of non-equilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing on the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic non-equilibrium systems are discussed.

2.
Entropy (Basel) ; 20(6)2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33265544

RESUMO

Uncertainty relations involving incompatible observables are one of the cornerstones of quantum mechanics. Aside from their fundamental significance, they play an important role in practical applications, such as detection of quantum correlations and security requirements in quantum cryptography. In continuous variable systems, the spectra of the relevant observables form a continuum and this necessitates the coarse graining of measurements. However, these coarse-grained observables do not necessarily obey the same uncertainty relations as the original ones, a fact that can lead to false results when considering applications. That is, one cannot naively replace the original observables in the uncertainty relation for the coarse-grained observables and expect consistent results. As such, several uncertainty relations that are specifically designed for coarse-grained observables have been developed. In recognition of the 90th anniversary of the seminal Heisenberg uncertainty relation, celebrated last year, and all the subsequent work since then, here we give a review of the state of the art of coarse-grained uncertainty relations in continuous variable quantum systems, as well as their applications to fundamental quantum physics and quantum information tasks. Our review is meant to be balanced in its content, since both theoretical considerations and experimental perspectives are put on an equal footing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA