Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39124094

RESUMO

Graphene-based surface plasmon resonance (SPR) biosensors have emerged as a promising technology for the highly sensitive and accurate detection of biomolecules. This study presents a comprehensive theoretical analysis of graphene-based SPR biosensors, focusing on configurations with single and bimetallic metallic layers. In this study, we investigated the impact of various metallic substrates, including gold and silver, and the number of graphene layers on key performance metrics: sensitivity of detection, detection accuracy, and quality factor. Our findings reveal that configurations with graphene first supported on gold exhibit superior performance, with sensitivity of detection enhancements up to 30% for ten graphene layers. In contrast, silver-supported configurations, while demonstrating high sensitivity, face challenges in maintaining detection accuracy. Additionally, reducing the thickness of metallic layers by 30% optimizes light coupling and enhances sensor performance. These insights highlight the significant potential of graphene-based SPR biosensors in achieving high sensitivity of detection and reliability, paving the way for their application in diverse biosensing technologies. Our findings pretend to motivate future research focusing on optimizing metallic layer thickness, improving the stability of silver-supported configurations, and experimentally validating the theoretical findings to further advance the development of high-performance SPR biosensors.


Assuntos
Técnicas Biossensoriais , Ouro , Grafite , Prata , Ressonância de Plasmônio de Superfície , Grafite/química , Ressonância de Plasmônio de Superfície/métodos , Prata/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Ouro/química
2.
Membranes (Basel) ; 11(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921575

RESUMO

Air pollution and solid pollution are considered global problems, and endanger human health mainly due to the emission of fine particulate matter released into the atmosphere and improper disposal of post-consumer plastic bottles. Therefore, it is urgent to develop filter media to effectively protect the public. The properties of plastics make them potential candidates for nanofiber mat formers due to their attractive structural and mechanical characteristics. This work aims to produce and evaluate novel PET electrospun fibers dispensed with the use of support materials to be used as filter media to remove nanoparticles from the air. The electrospinning process was carried out by changing the concentration of the polymer solution, the needle diameter, and the electrospinning processing time at two rotation speeds. The average diameters of the micro- and nanofibers of the filter media produced ranged from 3.25 µm to 0.65 µm and it was possible to conclude that, as the size of the fibers decreased, the mechanical strength increased from 3.2 to 4.5 MPa. In filtration tests, a collection efficiency of up to 99% with low-pressure drops (19.4 Pa) was obtained for nanoparticles, demonstrating high quality factor filter media, which could be applicable in gas filtration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA