Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Cardiol Mex ; 2024 May 09.
Artigo em Espanhol | MEDLINE | ID: mdl-38724012

RESUMO

Hypertension is a major risk of morbidity and mortality in patients when it is uncontrolled. In spite of improved therapies currently available for blood pressure control, their complications are far away from being accomplished. Therefore, chronic renal failure is frequently observed in hypertensive patients. Thus, insights on mechanisms that may contribute to arterial pressure control should be studied to prevent life-threatening cardiovascular disorders. Purinergic receptors have been recognized in the physiopathology of hypertension; this review summarizes their participation in the renal abnormalities of the kidney in hypertension. Several studies have suggested the activation of renal purinergic receptors under an elevated interstitial ATP milieu as a fundamental pathway that leads to generation and maintained hypertension. Elevated ATP concentration alters fundamental mechanisms involved in the long-term control of blood pressure such as pressure natriuresis, autoregulation of glomerular filtration rate and renal blood flow, as well as increased tubule-glomerular feedback responses, overall, these alterations decrease sodium excretion; in addition, the expression of ATP receptors is modified. Under a genetical background, ATP induces the production of vasoactive compounds, decreases renal function and induces tubulointerstitial injury before glomerular damage. Simultaneously, a deleterious interaction between angiotensin II and purinergic receptors lead to the progression of renal damage.


La hipertensión arterial descontrolada es un factor de riesgo muy relevante para el desarrollo de complicaciones cardiovasculares graves. A pesar de los recursos disponibles en la actualidad, el control de la hipertensión arterial y sus complicaciones dista mucho de lograrse. Por ello, sus secuelas continúan siendo catastróficas, como la insuficiencia renal crónica. De ahí la relevancia de reconocer factores que pudieran modificarse para evitar esta complicación. Recientemente se ha propuesto que los receptores purinérgicos contribuyen en forma importante en las alteraciones renales que ocurren en la hipertensión arterial; en esta revisión se resume brevemente su papel. En varios estudios se ha demostrado que cuando existen concentraciones elevadas de ATP en el intersticio renal, la activación de los receptores purinérgicos constituye una vía fundamental en la generación y la persistencia de hipertensión arterial. Las concentraciones elevadas de ATP alteran mecanismos fundamentales asociados en el control de la presión arterial, como el mecanismo de natriuresis de presión, la autorregulación del flujo renal y la filtración glomerular, así como el aumento en la sensibilidad del mecanismo de retroalimentación tubuloglomerular. La alteración de estos mecanismos contribuye a la disminución de la excreción urinaria de sodio. Además, se modifica la expresión de receptores de ATP (purinérgicos). Bajo la influencia de alteraciones genéticas, el ATP estimula la producción de compuestos vasoactivos y en conjunto producen una disminución de la función renal y lesión tubulointersticial antes de que se lesione el glomérulo. Al mismo tiempo, la interacción de la angiotensina II y los receptores purinérgicos favorece la progresión del daño renal.

2.
Purinergic Signal ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713328

RESUMO

Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,ß-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.

3.
Br J Pharmacol ; 181(16): 2905-2922, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679932

RESUMO

BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.


Assuntos
Trifosfato de Adenosina , Catecolaminas , Células Cromafins , Exocitose , Receptores Purinérgicos P2X7 , Animais , Receptores Purinérgicos P2X7/metabolismo , Células Cromafins/metabolismo , Células Cromafins/efeitos dos fármacos , Bovinos , Trifosfato de Adenosina/metabolismo , Camundongos , Catecolaminas/metabolismo , Exocitose/efeitos dos fármacos , Células PC12 , Ratos , Cálcio/metabolismo , Comunicação Autócrina , Camundongos Endogâmicos C57BL , Células Cultivadas , Masculino
4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38139810

RESUMO

Purine nucleosides (adenosine) and nucleotides such as adenosine mono/di/triphosphate (AMP/ADP/ATP) may produce complex cardiovascular responses. For example, adenosine-5'-(ß-thio)-diphosphate (ADPßS; a stable synthetic analogue of ADP) can induce vasodilatation/vasodepressor responses by endothelium-dependent and independent mechanisms involving purinergic P2Y receptors; however, the specific subtypes participating in these responses remain unknown. Therefore, this study investigated the receptor subtypes mediating the blood pressure changes induced by intravenous bolus of ADPßS in male Wistar rats in the absence and presence of central mechanisms with the antagonists MRS2500 (P2Y1), PSB0739 (P2Y12), and MRS2211 (P2Y13). For this purpose, 120 rats were divided into 60 anaesthetised rats and 60 pithed rats, and further subdivided into four groups (n = 30 each), namely: (a) anaesthetised rats, (b) anaesthetised rats with bilateral vagotomy, (c) pithed rats, and (d) pithed rats continuously infused (intravenously) with methoxamine (an α1-adrenergic agonist that restores systemic vascular tone). We observed, in all four groups, that the immediate decreases in diastolic blood pressure produced by ADPßS were exclusively mediated by peripheral activation of P2Y1 receptors. Nevertheless, the subsequent increases in systolic blood pressure elicited by ADPßS in pithed rats infused with methoxamine probably involved peripheral activation of P2Y1, P2Y12, and P2Y13 receptors.

5.
J Toxicol Environ Health A ; 86(17): 632-652, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37434435

RESUMO

Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.


Assuntos
Melanoma , Solanaceae , Humanos , Antioxidantes/farmacologia , Água , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Melanoma/tratamento farmacológico , Proliferação de Células
6.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175571

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health concern. Three years since its origin, despite the approval of vaccines and specific treatments against this new coronavirus, there are still high rates of infection, hospitalization, and mortality in some countries. COVID-19 is characterised by a high inflammatory state and coagulation disturbances that may be linked to purinergic signalling molecules such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), and purinergic receptors (P1 and P2). These nucleotides/nucleosides play important roles in cellular processes, such as immunomodulation, blood clot formation, and vasodilation, which are affected during SARS-CoV-2 infection. Therefore, drugs targeting this purinergic pathway, currently used for other pathologies, are being evaluated in preclinical and clinical trials for COVID-19. In this review, we focus on the potential of these drugs to control the release, degradation, and reuptake of these extracellular nucleotides and nucleosides to treat COVID-19. Drugs targeting the P1 receptors could have therapeutic efficacy due to their capacity to modulate the cytokine storm and the immune response. Those acting in P2X7, which is linked to NLRP3 inflammasome activation, are also valuable candidates as they can reduce the release of pro-inflammatory cytokines. However, according to the available preclinical and clinical data, the most promising medications to be used for COVID-19 treatment are those that modulate platelets behaviour and blood coagulation factors, mainly through the P2Y12 receptor.


Assuntos
COVID-19 , Nucleosídeos , Humanos , Nucleosídeos/metabolismo , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Receptores Purinérgicos/metabolismo
7.
Biomed Pharmacother ; 162: 114608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003033

RESUMO

Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.


Assuntos
Acetais , Naftoquinonas , Humanos , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo
8.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986572

RESUMO

Calcitonin gene-related peptide (CGRP), an endogenous neuropeptide released from perivascular sensory nerves, exerts a powerful vasodilatation. Interestingly, adenosine triphosphate (ATP) stimulates the release of CGRP by activation of prejunctional P2X2/3 receptors, and adenosine 5'-O-2-thiodiphosphate (ADPßS), a stable adenosine diphosphate (ADP) analogue, produces vasodilator/vasodepressor responses by endothelial P2Y1 receptors. Since the role of ADP in the prejunctional modulation of the vasodepressor sensory CGRPergic drive and the receptors involved remain unknown, this study investigated whether ADPßS inhibits this CGRPergic drive. Accordingly, 132 male Wistar rats were pithed and subsequently divided into two sets. In set 1, ADPßS (5.6 and 10 µg/kg·min) inhibited the vasodepressor CGRPergic responses by electrical stimulation of the spinal T9-T12 segment. This inhibition by ADPßS (5.6 µg/kg·min) was reverted after i.v. administration of the purinergic antagonists MRS2500 (300 µg/kg; P2Y1) or MRS2211 (3000 µg/kg; P2Y13), but not by PSB0739 (300 µg/kg; P2Y12), MRS2211 (1000 µg/kg; P2Y13) or the KATP blocker glibenclamide (20 mg/kg). In set 2, ADPßS (5.6 µg/kg·min) failed to modify the vasodepressor responses to exogenous α-CGRP. These results suggest that ADPßS inhibits CGRP release in perivascular sensory nerves. This inhibition, apparently unrelated to activation of ATP-sensitive K+ channels, involves P2Y1 and probably P2Y13, but not P2Y12 receptors.

9.
Animals (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899697

RESUMO

The bovine endometrium has an important defensive role in the postpartum period that acts when an inflammatory process associated with tissue damage or infection by bacteria is produced. Endometrial cells release cytokines and chemokines that recruit inflammatory cells, which release danger-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP), and initiate and regulate the inflammatory response. However, the role of ATP in bovine endometrial cells is unclear. The aim of this study was to determine the effect of ATP on interleukin-8 (IL-8) release, intracellular calcium mobilization, ERK1/2 phosphorylation, and the role of P2Y receptors, in bovine endometrial cells. Bovine endometrial (BEND) cells were incubated with ATP and the IL-8 release was determined by the ELISA assay. ATP of 50 and 100 µM significantly increased IL-8 released in BEND cells (50 µM: 23.16 ± 3.82 pg/mL, p = 0.0018; 100 µM: 30.14 ± 7.43 pg/mL, p = 0.0004). ATP (50 µM) also induced rapid intracellular calcium mobilization in Fura-2AM-loaded BEND cells, as well as ERK1/2 phosphorylation (ratio 1.1 ± 0.04, p = 0.0049). Suramin (50 µM), a pan-antagonist of P2Y receptors, partially reduced the intracellular calcium mobilization, ERK1/2 phosphorylation (ratio 0.83 ± 0.08, p = 0.045), and IL-8 release (9.67 ± 0.02 pg/mL, p = 0.014) induced by ATP. Finally, BEND cells expressed higher mRNA levels of P2Y1 and P2Y2 purinergic subtype receptors, and lower levels of P2Y11 and P2Y12 receptors, as determined by RT-qPCR. In conclusion, these results showed that ATP activates pro-inflammatory responses in BEND cells, which are partially mediated via P2Y receptors, and BEND cells express the mRNA of subtypes of P2Y receptors, which could have a key role in bovine endometrial inflammation.

10.
Clin Exp Med ; 23(7): 3651-3662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36943594

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated inflammatory response to infection. To date, there is no specific treatment established for sepsis. In the extracellular compartment, purines such as adenosine triphosphate (ATP) and adenosine play essential roles in the immune/inflammatory responses during sepsis and septic shock. The balance of extracellular levels among ATP and adenosine is intimately involved in the signals related to immune stimulation/immunosuppression balance. Specialized enzymes, including CD39, CD73, and adenosine deaminase (ADA), are responsible to metabolize ATP to adenosine which will further sensitize the P2 and P1 purinoceptors, respectively. Disruption of the purinergic pathway had been described in the sepsis pathophysiology. Although purinergic signaling has been suggested as a potential target for sepsis treatment, the majority of data available were obtained using pre-clinical approaches. We hypothesized that, as a reflection of deregulation on purinergic signaling, septic patients exhibit differential measurements of serum, neutrophils and monocytes purinergic pathway markers when compared to two types of controls (healthy and ward). It was observed that ATP and ADP serum levels were increased in septic patients, as well as the A2a mRNA expression in neutrophils and monocytes. Both ATPase/ADPase activities were increased during sepsis. Serum ATP and ADP levels, and both ATPase and ADPase activities were associated with the diagnosis of sepsis, representing potential biomarkers candidates. In conclusion, our results advance the translation of purinergic signaling from pre-clinical models into the clinical setting opening opportunities for so much needed new strategies for sepsis and septic shock diagnostics and treatment.


Assuntos
Sepse , Choque Séptico , Humanos , Apirase/metabolismo , Adenosina , Trifosfato de Adenosina/metabolismo , Biomarcadores , Sepse/diagnóstico , Difosfato de Adenosina , Adenosina Trifosfatases
11.
Parasitol Res ; 122(1): 77-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36282319

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, and its congenital transmission is of paramount concern. During embryonic development, infection with the parasite causes irreversible damage to the still-forming fetus's central nervous system (CNS). In the pathogenesis of neurotoxoplasmosis, purinergic receptors prejudice neuroprotection, neuroinflammation, and activation of microbicide mechanisms against the parasitic vacuole. This study used curcumin as a treatment for neural precursor cells (NPCs) infected with T. gondii. The congenital toxoplasmosis induction consisted of maternal infection with the VEG strain, and NPCs were obtained from the telencephalon of mouse embryos. Curcumin at increasing concentrations was administered in vitro to analyze NPC metabolic activity, cell number, and size, as well as neurogliogenesis, proving to be effective in recovering the size of infected NPCs. Curcumin partially re-established impaired neurogenesis. Purinergic A1, A2A, and P2X7 receptors may be related to neuroprotection, neuroinflammatory control, and activation of mechanisms for inducing the parasite's death. ERK 1/2 was highly expressed in infected cells, while its expression rates decreased after the addition of the treatment, highlighting the possible anti-inflammatory action of curcumin. These findings suggest that curcumin treats neurological perturbations induced by toxoplasmosis.


Assuntos
Curcumina , Células-Tronco Neurais , Toxoplasma , Toxoplasmose Cerebral , Toxoplasmose Congênita , Feminino , Gravidez , Animais , Camundongos , Toxoplasma/fisiologia , Curcumina/farmacologia , Toxoplasmose Congênita/parasitologia
12.
Front Cell Neurosci ; 16: 943506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212694

RESUMO

Functional recovery after peripheral nerve injuries is critically dependent on axonal regeneration. Several autonomous and non-cell autonomous processes regulate axonal regeneration, including the activation of a growth-associated transcriptional program in neurons and the reprogramming of differentiated Schwann cells (dSCs) into repair SCs (rSCs), triggering the secretion of neurotrophic factors and the activation of an inflammatory response. Repair Schwann cells also release pro-regenerative extracellular vesicles (EVs), but is still unknown whether EV secretion is regulated non-cell autonomously by the regenerating neuron. Interestingly, it has been described that nerve activity enhances axonal regeneration by increasing the secretion of neurotrophic factors by rSC, but whether this activity modulates pro-regenerative EV secretion by rSC has not yet been explored. Here, we demonstrate that neuronal activity enhances the release of rSC-derived EVs and their transfer to neurons. This effect is mediated by activation of P2Y receptors in SCs after activity-dependent ATP release from sensory neurons. Importantly, activation of P2Y in rSCs also increases the amount of miRNA-21 present in rSC-EVs. Taken together, our results demonstrate that neuron to glia communication by ATP-P2Y signaling regulates the content of SC-derived EVs and their transfer to axons, modulating axonal elongation in a non-cell autonomous manner.

13.
J Neurosci Res ; 100(10): 1933-1950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839285

RESUMO

At the mouse neuromuscular junction, adenosine triphosphate (ATP), which is co-released with the neurotransmitter acetylcholine (ACh), and its metabolite adenosine, modulate neurotransmitter release by activating presynaptic inhibitory P2Y<sub>13</sub> receptors (a subtype of ATP/adenosine diphosphate [ADP] receptor), inhibitory A<sub>1</sub> and A<sub>3</sub> adenosine receptors, and excitatory A<sub>2A</sub> adenosine receptors. To study the effect of endogenous purines, when phrenic-diaphragm preparations are depolarized by different nerve stimulation patterns, we analyzed the effect of the antagonists for P2Y<sub>13</sub> , A<sub>1</sub> , A<sub>3</sub> , and A<sub>2A</sub> receptors (AR-C69931MX, 8-cyclopentyl-1,3-dipropylxanthine, MRS-1191, and SCH-58261, respectively) on the amplitude of the end-plate potentials of the trains, and contrasted these results with those obtained with the selective agonists of these receptors (2-methylthioadenosine 5'-diphosphate trisodium salt hydrate, 2-chloro-N<sup>6</sup> -cyclopentyl-adenosine, inosine, and PSB-0777, respectively). During continuous 0.5-Hz stimulation, the amount of endogenous purines was not enough to activate purinergic receptors, while at continuous 5-Hz stimulation, an incipient action of endogenous purines on P2Y<sub>13</sub> , A<sub>1</sub> and A3 receptors might be evident just at the end of the trains. During continuous 50-Hz stimulation, the concentration of endogenous ATP/ADP and adenosine exerted an inhibitory action on ACh release after of the initial phase of the train, but when the nerve was stimulated at intermittent 50 Hz (5 bursts), this behavior was not observed. Excitatory A<sub>2A</sub> receptors were only activated when continuous 100-Hz stimulation was applied. In conclusion, when motor nerve terminals are depolarized by repetitive stimulation of the phrenic nerve, endogenous ATP/ADP and adenosine are able to fine-tune neurosecretion depending on the frequency and pattern of stimulation.


Assuntos
Acetilcolina , Junção Neuromuscular , Acetilcolina/metabolismo , Adenosina , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Camundongos , Receptores Purinérgicos P1/metabolismo
14.
Mol Cell Biochem ; 477(8): 2047-2057, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35429327

RESUMO

As alterations in purinergic signaling have been observed in bladder diseases, we aimed to assess the potential prognostic role of purinergic receptors in bladder cancer in a translational approach based on clinical databases and in vitro data. The prognostic role of purinergic receptors in the survival of patients with bladder cancer and the expression profile of the altered P2 receptors in normal and in tumor samples were determined using The Cancer Genome Atlas databank. In T24 and RT4 human bladder cancer cell lines, the P2 purinergic receptors were characterized by RT-PCR and RT-qPCR analysis including radiotherapy exposure as treatment. The cell number and the cumulative population doubling were also assessed. The expression profile of P2X6 receptor in the cancer pathological stage and in the nodal metastasis status was in agreement with Kaplan-Meier analysis, indicating that high expression of this receptor was related to an increased survival rate in patients with bladder cancer. Of all the P2 receptors expressed on T24 cell line, P2X6 presented high expression after radiotherapy, while it was not altered in RT4 cells. In addition, irradiation promoted a decrease of T24 cell number, but did not change the cell number of RT4 after the same time and radiation dose. Along 7 days after irradiation exposure, both cells regrew. However, while P2X6 receptor was downregulated in T24 cells, it was upregulated in RT4 cells. Our findings indicated that high P2X6 receptor expression induced by radiation in T24 cell line may predict a good survival prognostic factor.


Assuntos
Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
15.
Front Physiol ; 13: 814999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283778

RESUMO

There are over 80 million people currently living who have had a stroke. The ischemic injury in the brain starts a cascade of events that lead to neuronal death, inducing neurodegeneration which could lead to Alzheimer's disease (AD). Cerebrovascular diseases have been suggested to contribute to AD neuropathological changes, including brain atrophy and accumulation of abnormal proteins such as amyloid beta (Aß). In patients older than 60 years, the incidence of dementia a year after stroke was significantly increased. Nevertheless, the molecular links between stroke and dementia are not clearly understood but could be related to neuroinflammation. Considering that activated microglia has a central role, there are brain-resident innate immune cells and are about 10-15% of glial cells in the adult brain. Their phagocytic activity is essential for synaptic homeostasis in different areas, such as the hippocampus. These cells polarize into phenotypes or subtypes: the pro-inflammatory M1 phenotype, or the immunosuppressive M2 phenotype. Phenotype M1 is induced by classical activation, where microglia secrete a high level of pro- inflammatory factors which can cause damage to the surrounding neuronal cells. Otherwise, M2 phenotype is the major effector cell with the potential to counteract pro-inflammatory reactions and promote repair genes expression. Moreover, after the classical activation, an anti-inflammatory and a repair phase are initiated to achieve tissue homeostasis. Recently it has been described the concepts of homeostatic and reactive microglia and they had been related to major AD risk, linking to a multifunctional microglial response to Aß plaques and pathophysiology markers related, such as intracellular increased calcium. The upregulation and increased activity of purinergic receptors activated by ADP/ATP, specially P2X4R, which has a high permeability to calcium and is mainly expressed in microglial cells, is observed in diseases related to neuroinflammation, such as neuropathic pain and stroke. Thus, P2X4R is associated with microglial activation. P2X4R activation drives microglia motility via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Also, these receptors are involved in inflammatory-mediated prostaglandin E2 (PGE2) production and induce a secretion and increase the expression of BDNF and TNF-α which could be a link between pathologies related to aging and neuroinflammation.

16.
J Cell Physiol ; 237(1): 389-400, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514618

RESUMO

Under nonpathological conditions, the extracellular nucleotide concentration remains constant and low (nM range) because of a close balance between ATP release and ATP consumption. This balance is completely altered in cancer disease. Adenine and uridine nucleotides are found in the extracellular space of tumors in high millimolar (mM) concentrations acting as extracellular signaling molecules. In general, although uridine nucleotides may be involved in different tumor cell responses, purinergic signaling in cancer is preferentially focused on adenine nucleotides and nucleosides. Extracellular ATP can bind to specific receptors (P receptors) triggering different responses, or it can be hydrolyzed by ectoenzymes bound to cell membranes to render the final product adenosine. The latter pathway plays an important role in the increase of adenosine in tumor microenvironment. In this study, we will focus on extracellular ATP and adenosine, their effects acting as ligands of specific receptors, activating ectoenzymes, and promoting epithelial-mesenchymal transition, migration, and invasion in cancer cells. Finding the roles that these nucleotides play in tumor microenvironment may be important to design new intervention strategies in cancer therapies.


Assuntos
Adenosina , Neoplasias , Trifosfato de Adenosina/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Nucleotídeos/metabolismo , Microambiente Tumoral , Nucleotídeos de Uracila
18.
Biomed Pharmacother ; 142: 112006, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392085

RESUMO

P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-ß (IL-1ß) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Physalis/química , Extratos Vegetais/farmacologia , Secoesteroides/farmacologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Simulação por Computador , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Moleculares , Extratos Vegetais/administração & dosagem , Folhas de Planta , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/isolamento & purificação , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Secoesteroides/isolamento & purificação
19.
Pharmaceutics ; 13(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452195

RESUMO

Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.

20.
Biomed Pharmacother ; 142: 111968, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343896

RESUMO

Amyloid beta peptide (Aß) is tightly associated with the physiopathology of Alzheimer's Disease (AD) as one of the most important factors in the evolution of the pathology. In this context, we previously reported that Aß increases the expression of ionotropic purinergic receptor 2 (P2×2R). However, its role on the cellular and molecular Aß toxicity is unknown, especially in human brain of AD patients. Using cellular and molecular approaches in hippocampal neurons, PC12 cells, and human brain samples of patients with AD, we evaluated the participation of P2×2R in the physiopathology of AD. Here, we reported that Aß oligomers (Aßo) increased P2×2 levels in mice hippocampal neurons, and that this receptor increases at late Braak stages of AD patients. Aßo also increases the colocalization of APP with Rab5, an early endosomes marker, and decreased the nuclear/cytoplasmic ratio of Fe65 and PGC-1α immunoreactivity. The overexpression in PC12 cells of P2×2a, but not P2×2b, replicated these changes in Fe65 and PGC-1α; however, both overexpressed isoforms increased levels of Aß. Taken together, these data suggest that P2×2 is upregulated in AD and it could be a key potentiator of the physiopathology of Aß. Our results point to a possible participation in a toxic cycle that increases Aß production, Ca2+ overload, and a decrease of PGC-1α. These novel findings put the P2×2R as a key novel pharmacological target to develop new therapeutic strategies to treat Alzheimer's Disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/fisiopatologia , Receptores Purinérgicos P2X2/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Células PC12 , Ratos , Receptores Purinérgicos P2X2/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA