Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Protein J ; 43(2): 333-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347326

RESUMO

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Assuntos
Cajanus , Folhas de Planta , Humanos , Cajanus/química , Folhas de Planta/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo
3.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1559125

RESUMO

ABSTRACT The group-specific antigen (gag) plays a crucial role in the assembly, release, and maturation of HIV. This study aimed to analyze the partial sequence of the HIV gag gene to classify HIV subtypes, identify recombination sites, and detect protease inhibitor (PI) resistance-associated mutations (RAMs). The cohort included 100 people living with HIV (PLH) who had experienced antiretroviral treatment failure with reverse transcriptase/protease inhibitors. Proviral HIV-DNA was successfully sequenced in 96 out of 100 samples for gag regions, specifically matrix (p17) and capsid (p24). Moreover, from these 96 sequences, 82 (85.42%) were classified as subtype B, six (6.25%) as subtype F1, one (1.04%) as subtype C, and seven (7.29%) exhibited a mosaic pattern between subtypes B and F1 (B/F1), with breakpoints at p24 protein. Insertions and deletions of amino acid at p17 were observed in 51 samples (53.13%). The prevalence of PI RAM in the partial gag gene was observed in 78 out of 96 PLH (81.25%). Among these cases, the most common mutations were R76K (53.13%), Y79F (31.25%), and H219Q (14.58%) at non-cleavage sites, as well as V128I (10.42%) and Y132F (11.46%) at cleavage sites. While B/F1 recombination was identified in the p24, the p17 coding region showed higher diversity, where insertions, deletions, and PI RAM, were observed at high prevalence. In PLH with virological failure, the analysis of the partial gag gene could contribute to more accurate predictions in genotypic resistance to PIs. This can aid guide more effective HIV treatment strategies.

4.
Nat Prod Res ; : 1-6, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615635

RESUMO

This study describes the extraction and identification by electrophoretic and spectrometric techniques of protease inhibitor from the medicinal plant Alocasia macrorrhizos as well as investigates their immunomodulatory properties and cell viability. The A. macrorrhizos tubers were subjected to protease inhibitor extractions and characterised using SDS-PAGE and MALDI-TOF. The protein extracts were assessed for activities trypsin inhibition stoichiometry, haemagglutinating, cell viability, NO and TNF-α production inhibition. Concerning the protease inhibitors analysis through SDS-PAGE, the results showed two bands with 11 and 24 kDa, and the MS analysis detected the ions more intense of m/z 4276.795 and 8563.361 in the roasted protein extract. The IC50 of trypsin inhibition was 0.119 and 0.302 mg L-1 in the roasted and crude tuber, respectively. The protease inhibitors extract from the roasted tubers showed a reduction in the production of NO and TNF-α at concentrations lower than 100 µg mL-1, without a reduction in cell viability.

5.
Int J Biol Macromol ; 252: 126453, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619683

RESUMO

Serine proteases play crucial biological roles and have their activity controlled by inhibitors, such as the EcTI, a serine protease inhibitor purified from Enterolobium contortisiliquum seeds, which has anticancer activity. This study aimed to conjugate EcTI with quantum dots (QDs), fluorophores with outstanding optical properties, and investigate the interaction of QDs-EcTI nanoprobe with cancer cells. The conjugation was evaluated by fluorescence correlation spectroscopy (FCS) and fluorescence microplate assay (FMA). EcTI inhibitory activity after interaction with QDs was also analyzed. From FCS, the conjugate presented a hydrodynamic diameter about 4× greater than bare QDs, suggesting a successful conjugation. This was supported by FMA, which showed a relative fluorescence intensity of ca. 3815% for the nanosystem, concerning bare QDs or EcTI alone. The EcTI inhibitory activity remained intact after its interaction with QDs. From flow cytometry analyses, approximately 62% of MDA-MB-231 and 90% of HeLa cells were labeled with the QD-EcTI conjugate, suggesting that their membranes have different protease levels to which EcTI exhibits an affinity. Concluding, the QD-EcTI represents a valuable nanotool to study the interaction of this inhibitor with cancer cells using fluorescence-based techniques with the potential to unravel the intricate dynamics of interplays between proteases and inhibitors in cancer biology.


Assuntos
Fabaceae , Neoplasias , Pontos Quânticos , Humanos , Inibidores da Tripsina/farmacologia , Células HeLa , Fabaceae/química , Serina Proteases , Corantes
6.
Biomedicines ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37239031

RESUMO

Phytocystatins are proteinaceous competitive inhibitors of cysteine peptidases involved in physiological and defensive roles in plants. Their application as potential therapeutics for human disorders has been suggested, and the hunt for novel cystatin variants in different plants, such as maqui (Aristotelia chilensis), is pertinent. Being an understudied species, the biotechnological potential of maqui proteins is little understood. In the present study, we constructed a transcriptome of maqui plantlets using next-generation sequencing, in which we found six cystatin sequences. Five of them were cloned and recombinantly expressed. Inhibition assays were performed against papain and human cathepsins B and L. Maquicystatins can inhibit the proteases in nanomolar order, except MaquiCPIs 4 and 5, which inhibit cathepsin B in micromolar order. This suggests maquicystatins' potential use for treating human diseases. In addition, since we previously demonstrated the efficacy of a sugarcane-derived cystatin to protect dental enamel, we tested the ability of MaquiCPI-3 to protect both dentin and enamel. Both were protected by this protein (by One-way ANOVA and Tukey's Multiple Comparisons Test, p < 0.05), suggesting its potential usage in dental products.

7.
Pharmaceutics ; 15(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36986642

RESUMO

Fungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper (Capsicum annuum L.) seeds. The inhibitor not only showed potent and specific activity against the pathogenic fungus Candida albicans, but was also found to be non-toxic against human cells. Furthermore, this inhibitor is unique in that it also inhibits α-1,4-glucosidase, positioning it as one of the first plant-derived protease inhibitors with dual biological activity. This exciting discovery opens new avenues for the development of this inhibitor as a promising antifungal agent and highlights the potential of plant-derived protease inhibitors as a rich source for the discovery of novel multifunctional bioactive molecules.

8.
J Enzyme Inhib Med Chem ; 38(1): 67-83, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305291

RESUMO

Bacterial infections have become a global concern, stimulating the growing demand for natural and biologically safe therapeutic agents with antibacterial action. This study was evaluated the genotoxicity of the trypsin inhibitor isolated from tamarind seeds (TTI) and the antibacterial effect of TTI theoric model, number 56, and conformation number 287 (TTIp 56/287) and derived peptides in silico. TTI (0.3 and 0.6 mg.mL-1) did not cause genotoxicity in cells (p > 0.05). In silico, a greater interaction of TTIp 56/287 with the Gram-positive membrane (GP) was observed, with an interaction potential energy (IPE) of -1094.97 kcal.mol-1. In the TTIp 56/287-GP interaction, the Arginine, Threonine (Thr), and Lysine residues presented lower IPE. In molecular dynamics (MD), Peptidotrychyme59 (TVSQTPIDIPIGLPVR) showed an IPE of -518.08 kcal.mol-1 with the membrane of GP bacteria, and the Thr and Arginine residues showed the greater IPE. The results highlight new perspectives on TTI and its derived peptides antibacterial activity.


Assuntos
Tamarindus , Inibidores da Tripsina , Inibidores da Tripsina/farmacologia , Tamarindus/química , Peptídeos/química , Sementes/química , Antibacterianos/farmacologia , Antibacterianos/análise , Arginina/análise , Arginina/química
9.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995908

RESUMO

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Assuntos
Oxacilina , Staphylococcus aureus , Oxacilina/farmacologia , Oxacilina/análise , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/análise , Salvia hispanica , Antibacterianos/farmacologia , Sementes/química , Combinação de Medicamentos
10.
Curr Top Med Chem ; 23(1): 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35473544

RESUMO

The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines. A great research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research reports have been published in relation to COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (Mpro), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that use the Mpro as a target for the discovery of small-molecule inhibitors of COVID-19. They will be divided into two main groups, structure-based and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to development of more rigorous computational studies in future efforts to combat current and future pandemics.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Descoberta de Drogas , Humanos , Antivirais/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia
11.
Braz. j. oral sci ; 22: e230883, Jan.-Dec. 2023. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1399769

RESUMO

Phenylmethylsulfonyl fluoride (PMSF) is a protease inhibitor widely used in research, but fluoride is released during its action and this knowledge has been neglected in dental research. Aim: to evaluate if fluoride released by salivary protease action on PMSF affects enamel remineralization and fluoride uptake. Methods: Groups of 10 enamel slabs, with caries-like lesions and known surface hardness (SH), were subjected to one of the following treatment groups: Stimulated human saliva (SHS), negative control; SHS containing 1.0 µg F/mL (NaF), positive control; and SHS containing 10, 50 or 100 µM PMSF. The slabs were subjected to a pH-cycling regimen consisting of 22 h/day in each treatment solution and 2 h/day in a demineralizing solution. After 12 days, SH was again measured to calculate the percentage of surface hardness recovery (%SHR), followed by enamel fluoride uptake determination. The time-related fluoride release from 100.0 µM PMSF by SHS action was also determined. Data were analyzed by ANOVA followed by Newman-Keuls test. Results: The release of fluoride from PMSF by SHS was rapid, reaching a maximum value after 10 min. Fluoride released from PMSF was more effective in enhancing %SHR and increasing fluoride uptake in enamel compared with SHS alone (p < 0.05); furthermore, it was equivalent to the positive control (p > 0.05). Conclusion: In conclusion, fluoride released by saliva from PMSF is available to react with enamel and needs to be taken into account in research using this protease inhibitor


Assuntos
Fluoreto de Fenilmetilsulfonil , Inibidores de Proteases , Remineralização Dentária , Esmalte Dentário
12.
Viruses ; 16(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275945

RESUMO

BACKGROUND: HIV infection continues to be a global public health challenge, affecting approximately 1.7 million reproductive-aged women. Protease inhibitor-based highly active antiretroviral therapy (PI-HAART) has significantly reduced the risk of vertical transmission of HIV from mother to child. Nevertheless, concerns linger regarding the long-term effects, particularly on body composition, notably subcutaneous fat tissue (SFT). Although HIV-associated lipodystrophy syndrome (LS) has been well documented in adults and older children, its impact on fetuses exposed to PI-HAART remains underexplored. This study aims to evaluate SFT in the fetuses of HIV-pregnant women exposed to PI-HAART, assessing the potential clinical implications. METHODS: We conducted a comparative study between HIV-pregnant women receiving PI-HAART and an HIV-negative control group. Fetometry measurements were obtained via 3D ultrasound. SFT in the fetal arm and thigh segments was assessed. Data were analyzed using lineal multivariate regression and receiver-operating characteristics (ROC)-curve analysis. RESULTS: Fetuses exposed to PI-HAART exhibited a significant reduction in subcutaneous fat, particularly in the proximal third-middle union of the femur (coefficient: -2.588, p = 0.042). This reduction was correlated with lower newborn serum glucose levels (65.7 vs. 56.1, p = 0.007; coefficient: -1.277, p = 0.045). CONCLUSIONS: Our study sheds light on the connection between PI-HAART, fetal subcutaneous fat, and neonatal health. These findings might reveal the long-lasting effects of PI-HAART on newborns and children's well-being. Our results emphasize the need for a more balanced approach to managing pregnant women with HIV in developing countries and open new venues for research on the impact of intrauterine PI-HAART exposure on energy metabolism and fetal programming.


Assuntos
Infecções por HIV , Adulto , Criança , Humanos , Feminino , Recém-Nascido , Gravidez , Adolescente , Infecções por HIV/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Inibidores de Proteases/uso terapêutico , Gestantes , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Antivirais/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Feto , Gordura Subcutânea
13.
Comput Struct Biotechnol J ; 20: 5098-5114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187929

RESUMO

U-Omp19 is a bacterial protease inhibitor from Brucella abortus that inhibits gastrointestinal and lysosomal proteases, enhancing the half-life and immunogenicity of co-delivered antigens. U-Omp19 is a novel adjuvant that is in preclinical development with various vaccine candidates. However, the molecular mechanisms by which it exerts these functions and the structural elements responsible for these activities remain unknown. In this work, a structural, biochemical, and functional characterization of U-Omp19 is presented. Dynamic features of U-Omp19 in solution by NMR and the crystal structure of its C-terminal domain are described. The protein consists of a compact C-terminal beta-barrel domain and a flexible N-terminal domain. The latter domain behaves as an intrinsically disordered protein and retains the full protease inhibitor activity against pancreatic elastase, papain and pepsin. This domain also retains the capacity to induce CD8+ T cells in vivo of U-Omp19. This information may lead to future rationale vaccine designs using U-Omp19 as an adjuvant to deliver other proteins or peptides in oral formulations against infectious diseases, as well as to design strategies to incorporate modifications in its structure that may improve its adjuvanticity.

14.
Plant Sci ; 321: 111342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696902

RESUMO

The regulation of protease activity is a critical factor for the physiological balance during plant growth and development. Among the proteins involved in controlling protease activity are the cystatins, well-described inhibitors of cysteine proteases present in viruses, bacteria and most Eukaryotes. Plant cystatins, commonly called phytocystatins, display unique structural and functional diversity and are classified according to their molecular weight as type-I, -II, and -III. Their gene structure is highly conserved across Viridiplantae and provides insights into their evolutionary relationships. Many type-I phytocystatins with introns share sequence similarities with type-II phytocystatins. New data shows that they could have originated from recent losses of the carboxy-terminal extension present in type-II phytocystatins. Intronless type-I phytocystatins originated from a single event shared by flowering plants. Pieces of evidence show multiple events of gene duplications, intron losses, and gains throughout the expansion and diversity of the phytocystatin family. Gene duplication events in Gymnosperms and Eudicots resulted in inhibitors with amino acid substitutions that may modify their interaction with target proteases and other proteins. This review brings a phylogenomic analysis of plant cystatin evolution and contributes to a broader understanding of their origins. A complete functional genomic analysis among phytocystatins and their roles in plant development and responses to abiotic and biotic stresses remains a question to be fully solved.


Assuntos
Cistatinas , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Inibidores de Cisteína Proteinase/química , Duplicação Gênica , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico
15.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566311

RESUMO

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.


Assuntos
Fabaceae , Melanoma , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Melanoma/metabolismo , Processos Neoplásicos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores da Tripsina/farmacologia
16.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563133

RESUMO

The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.


Assuntos
Plantas , Inibidores de Proteases , Endopeptidases , Fungos/metabolismo , Humanos , Plantas/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Serina Proteases/metabolismo
17.
Front Immunol ; 13: 844837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296091

RESUMO

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Assuntos
Adjuvantes Imunológicos/metabolismo , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Compostos de Alúmen/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais , Formação de Anticorpos , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella/imunologia , Resistência à Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Int Arch Allergy Immunol ; 183(5): 471-478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016174

RESUMO

BACKGROUND: We have previously showed rTgPI-1 tolerogenic adjuvant properties in asthma treatment, turning it a promising candidate for allergen-specific immunotherapy. This therapy is an alternative treatment to control asthma that still presents several concerns related to its formulation. rTgPI-1 contains independent inhibitory domains able to inhibit trypsin and neutrophil elastase, both involved in asthma pathology. OBJECTIVES: In view of the need to design rational therapies, herein we investigated the contribution of the different inhibitory domains in rTgPI-1 therapeutic effectiveness. METHODS: BALB/c mice were rendered allergic by intraperitoneal OVA-alum sensitization and airway challenged. Once the asthmatic phenotype was achieved, mice were intranasally treated with OVA combined with the full-length recombinant protein rTgPI-1 or its truncated versions, Nt (containing trypsin-inhibitory domains) or Ct (containing neutrophil elastase-inhibitory domains). Afterward, mice were aerosol re-challenged. RESULTS: Asthmatic mice treated with the neutrophil elastase- or the trypsin-inhibitory domains separately failed to improve allergic lung inflammation. Only when all inhibitory domains were simultaneously administered, an improvement was achieved. Still, a better outcome was obtained when mice were treated with the full-length rTgPI-1. CONCLUSIONS: Adjuvant ability depends on the presence of all its inhibitory domains in a single entity, so it should be included in potential asthma treatment formulations as a full-length protein.


Assuntos
Asma , Toxoplasma , Adjuvantes Imunológicos , Animais , Asma/patologia , Asma/terapia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Elastase de Leucócito , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Inibidores de Serina Proteinase , Toxoplasma/genética , Tripsina , Vacinação
19.
Molecules, v. 27, n. 9, 2956, mai. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4345

RESUMO

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.

20.
Int J Mol Sci, v. 23, n. 9, p. 4742, abr. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4317

RESUMO

The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA