Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Genet ; 70(1): 14, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150461

RESUMO

In mammals, enteric salmonellas can use tetrathionate (ttr), formed as a by-product from the inflammatory process in the intestine, as electron acceptor in anaerobic respiration, and it can fuel its energy metabolism by degrading the microbial fermentation product 1,2-propanediol. However, recent studies have shown that this mechanism is not important for Salmonella infection in the intestine of poultry, while it prolongs the persistence of Salmonella at systemic sites in this species. In the current study, we show that ΔttrApduA strains of Salmonella enterica have lower net survival within chicken-derived HD-11 macrophages, as CFU was only 2.3% (S. Enteritidis ΔttrApduA), 2.3% (S. Heidelberg ΔttrApduA), and 3.0% (S. Typhimurium ΔttrApduA) compared to wild-type strains after 24 h inside HD-11 macrophage cells. The difference was not related to increased lysis of macrophages, and deletion of ttrA and pduA did not impair the ability of the strains to grow anaerobically. Further studies are indicated to determine the reason why Salmonella ΔttrApduA strains survive less well inside macrophage cell lines.


Assuntos
Galinhas , Macrófagos , Salmonella enterica , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Galinhas/microbiologia , Salmonella enterica/genética , Linhagem Celular , Deleção de Genes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/imunologia , Viabilidade Microbiana/genética
2.
Anim Reprod ; 20(3): e20220100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025997

RESUMO

The domestic pig breeds are in danger of extinction whereas the erosion of their gene pool is a serious concern because they significantly contribute to the rich biodiversity. Overall aim of this study was to determine the protocol for preserving the semen of the Windsnyer boars for conservation. A total of 18 ejaculates (6 replications/boar) were collected from three Windsnyer boars of proven fertility with the use of hand-gloved approach method, twice per week. Boars semen were pooled and extended with Beltsville Thawing Solution [(BTS) IMV Technologies, France], held at 18°C for 3 hours and centrifuged. The sperm pellet was re-suspended with Fraction A (20% egg yolk + BTS) and cooled at 5°C for 1 hour. Following cooling, semen was divided and diluted into different cryoprotectants (ethylene glycol, glycerol, propanediol, ethylene glycol + glycerol + propanediol) at equal contribution to make the total concentrations [4, 8, 12 and 16% and the 0% (control; without cryoprotectant)] and loaded into 0.25 mL straws. Two cryopreservation methods (liquid nitrogen vapour and controlled rated) were used to cryopreserve the semen straws. Semen straws were thawed at different temperatures (5, 18, 37 and 40°C) and evaluated for sperm motility, viability, and morphology traits. Post-thawed sperm total motility (36.0±5.3) and live normal sperm (49.5±8.3) percentages were recorded to be higher in the treatment supplemented with 16% glycerol (P<0.05). The highest sperm total motility percentage was recorded at 40°C (26.8±3.2) thawing temperature for liquid nitrogen vapour treatment (P<0.05). In conclusion, 16% glycerol was found to be the suitable cryoprotectant concentration for semen cryopreserved with liquid nitrogen vapour method and thawed at 40°C.

3.
Sci Total Environ ; 904: 166294, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586502

RESUMO

Sugarcane vinasse exits the distillation process at high temperatures, which may differ from the optimal temperatures for dark fermentation and anaerobic digestion. A 15 °C temperature increase, for example, stops sugarcane vinasse methane generation, making distillery vinasse digestion complicated. Conversely, in other aspects, co-digesting vinasse and glycerol has been proven to stabilize methane production from vinasse because of sulfate dilution. However, glycerol has not been tested to stabilize vinasse digestion under temperature changes. Thus, this study compared the effects of different temperature settings on the co-digestion of 10 g COD L-1 of vinasse and glycerol (50 %:50 % on a COD basis) in anaerobic fluidized bed reactors (AFBR), i.e., an acidogenic and a methanogenic one-stage AFBRs operated at 55, 60, and 65 °C, and two methanogenic AFBRs fed both with acidogenic effluent (one operated at room temperature (25 °C) and the other at 55, 60, and 65 °C). The co-digestion provided steady methane generation at all AFBRs, with methane production rates ranging from 2.27 to 2.93 L CH4 d-1 L-1, whether in one or two stages. A feature of this research was to unravel the black box of the role of sulfate in the digestion of sugarcane vinasse, which was rarely studied. Desulfovibrio was the primary genus degrading 1,3-propanediol into 3-hydroxypropanoate after genome sequencing. Phosphate acetyltransferase (EC: 2.3.1.8, K00625) and acetate kinase (EC: 2.7.2.1, K00925) genes were also found, suggesting propionate was metabolized. In practical aspects, regarding the two-stage systems, the thermophilic-mesophilic (acidogenic-methanogenic) configuration is best for extracting additional value-added products because 1,3-propanediol may be recovered at high yields with steady methane production at reduced energy expenditure in a reactor operated at room temperature. However, the one-stage design is best for methane generation per system volume since it remained stable with rising temperatures, and all systems presented similar methane production rates.


Assuntos
Reatores Biológicos , Saccharum , Saccharum/metabolismo , Glicerol , Anaerobiose , Metano/metabolismo , Sulfatos
4.
Microorganisms ; 11(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513028

RESUMO

Biotechnological processes at biorefineries are considered one of the most attractive alternatives for valorizing biomasses by converting them into bioproducts, biofuels, and bioenergy. For example, biodiesel can be obtained from oils and grease but generates glycerol as a byproduct. Glycerol recycling has been studied in several bioprocesses, with one of them being its conversion to 1,3-propanediol (1,3-PDO) by Clostridium. Clostridium beijerinckii is particularly interesting because it can produce a range of industrially relevant chemicals, including solvents and organic acids, and it is non-pathogenic. However, while Clostridium species have many potential advantages as chassis for synthetic biology applications, there are significant limitations when considering their use, such as their limited genetic tools, slow growth rate, and oxygen sensitivity. In this work, we carried out the overexpression of the genes involved in the synthesis of 1,3-PDO in C. beijerinckii Br21, which allowed us to increase the 1,3-PDO productivity in this strain. Thus, this study contributed to a better understanding of the metabolic pathways of glycerol conversion to 1,3-PDO by a C. beijerinckii isolate. Also, it made it possible to establish a transformation method of a modular vector in this strain, therefore expanding the limited genetic tools available for this bacterium, which is highly relevant in biotechnological applications.

5.
Anim. Reprod. (Online) ; 20(3): e20220100, 2023. tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1513569

RESUMO

Abstract The domestic pig breeds are in danger of extinction whereas the erosion of their gene pool is a serious concern because they significantly contribute to the rich biodiversity. Overall aim of this study was to determine the protocol for preserving the semen of the Windsnyer boars for conservation. A total of 18 ejaculates (6 replications/boar) were collected from three Windsnyer boars of proven fertility with the use of hand-gloved approach method, twice per week. Boars semen were pooled and extended with Beltsville Thawing Solution [(BTS) IMV Technologies, France], held at 18°C for 3 hours and centrifuged. The sperm pellet was re-suspended with Fraction A (20% egg yolk + BTS) and cooled at 5°C for 1 hour. Following cooling, semen was divided and diluted into different cryoprotectants (ethylene glycol, glycerol, propanediol, ethylene glycol + glycerol + propanediol) at equal contribution to make the total concentrations [4, 8, 12 and 16% and the 0% (control; without cryoprotectant)] and loaded into 0.25 mL straws. Two cryopreservation methods (liquid nitrogen vapour and controlled rated) were used to cryopreserve the semen straws. Semen straws were thawed at different temperatures (5, 18, 37 and 40°C) and evaluated for sperm motility, viability, and morphology traits. Post-thawed sperm total motility (36.0±5.3) and live normal sperm (49.5±8.3) percentages were recorded to be higher in the treatment supplemented with 16% glycerol (P<0.05). The highest sperm total motility percentage was recorded at 40°C (26.8±3.2) thawing temperature for liquid nitrogen vapour treatment (P<0.05). In conclusion, 16% glycerol was found to be the suitable cryoprotectant concentration for semen cryopreserved with liquid nitrogen vapour method and thawed at 40°C.

6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555523

RESUMO

It is well known that polar organic compounds, such as alcohols and polyols, exert an appreciable influence on water structure and thus have important effects on surfactant micellization. These substances are often used to modify the properties of surfactants in aqueous solutions, increasing the practical applications they have in diverse industries. In this work, the critical micelle concentration (CMC) of decyltrimethylammonium bromide (C10TAB) in water and in 1,2-propanediol aqueous solutions was determined from both sound velocity and surface tension measurements as a function of surfactant concentration in the temperature range of (293.15 to 308.15) K. The critical micelle concentration of the surfactant increases as the concentration of 1,2-propanediol becomes higher, while the effect on temperature does not show important changes within the range considered. At the selected temperatures, the standard thermodynamic parameters of micellization suggests that the addition of 1,2-propanediol makes the micellization process less favorable. Thermodynamic analysis suggests that the micelle formation of C10TAB is an entropy-driven process at the temperatures considered in this study.


Assuntos
Micelas , Propilenoglicol , Temperatura , Tensoativos/química , Água/química
7.
Microb Pathog ; 171: 105725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007847

RESUMO

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.


Assuntos
Galinhas , Salmonelose Animal , Animais , Galinhas/metabolismo , Propilenoglicol/metabolismo , Salmonella , Salmonella typhimurium , Tiossulfatos
8.
Biotechnol Prog ; 38(4): e3265, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443071

RESUMO

In recent years, residual glycerol from biodiesel synthesis made this chemical a cheap, readily available carbon source to bioprocess, which is also a form to reduce costs in the fuel industry. We propose and describe a bioprocess using fluidized and packed-bed continuous bioreactors to convert this residual glycerol into value-added products such as 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD), largely used in the chemical industry. The bacterium Klebsiella pneumoniae BLh-1, strain isolated by us, was immobilized in the permeable support of polyvinyl alcohol (LentiKats®). After testing different dilution rates (D) for all bioreactor configurations, the best obtained productivities of 1,3-PD was 8.69 g L-1  h-1 at a D = 0.45 h-1 , and 2.99 g L-1  h-1 at a D = 0.30 h-1 for 2,3-BD, both in the packed-bed configuration. In the fluidized-bed reactor, the highest productivity values achieved were 4.48 and 1.16 g L-1  h-1 for 1,3-PD and 2,3-BD, respectively, both at D = 0.33 h-1 . These results show the potential of setting up a bioprocess based on continuous cultures using immobilized K. pneumoniae BLh-1 in PVA matrices in order to efficiently convert the abundant surplus of glycerol into commercially important chemicals such as 1,3-PD and 2,3-BD.


Assuntos
Glicerol , Klebsiella pneumoniae , Biocombustíveis , Reatores Biológicos , Butileno Glicóis , Propilenoglicóis
9.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771112

RESUMO

In addition to dermatological complications, acne can affect the quality of life of individuals in numerous ways, such as employment, social habits and body dissatisfaction. According to our expertise, caprylic acid and propanediol would not have a direct action on Cutibacterium acnes. Despite this, we investigated the existence of a synergistic effect among xylitol, caprylic acid and propanediol as a mixture of compounds representing a single topical active ingredient that could benefit the treatment against acne. In vitro and in vivo assays were performed to challenge and to prove the efficacy of propanediol, xylitol and caprylic acid (PXCA) against acne. PXCA had its MIC challenged against C. acnes (formerly Propionibacterium acnes) and Staphylococcus aureus, resulting in concentrations of 0.125% and 0.25%, respectively, and it also developed antimicrobial activity against C. acnes (time-kill test). PXCA was able to reduce the 5-alpha reductase expression in 24% (p < 0.01) in comparison with the testosterone group. By the end of 28 days of treatment, the compound reduced the skin oiliness, porphyrin amount and the quantity of inflammatory lesions in participants. According to the dermatologist evaluation, PXCA improved the skin's general appearance, acne presence and size.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos/administração & dosagem , Antibacterianos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Caprilatos/administração & dosagem , Propilenoglicóis , Xilitol/administração & dosagem , Acne Vulgar/etiologia , Caprilatos/química , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Testes de Sensibilidade Microbiana , Propilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos , Resultado do Tratamento , Xilitol/química
10.
Avian Pathol ; : 1-12, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779420

RESUMO

Salmonella enterica serovars use self-induced intestinal inflammation to increase electron acceptor availability and to obtain a growth advantage in the host gut. There is evidence suggesting that the ability of Salmonella to use tetrathionate and 1,2-propanediol provides an advantage in murine infection. Thus, we present here the first study to evaluate both systemic infection and faecal excretion in commercial poultry challenged by Salmonella Enteritidis (SE) and S. Typhimurium (STM) harbouring deletions in ttrA and pduA genes, which are crucial to the metabolism of tetrathionate and 1,2-propanediol, respectively. Mutant strains were excreted at higher rates when compared to the wild-type strains. The highest rates were observed with white egg-layer and brown egg-layer chicks (67.5%), and broiler chicks (56.7%) challenged by SEΔttrAΔpduA, and brown egg-layer chicks (64.8%) challenged by STMΔttrAΔpduA. SEΔttrAΔpduA presented higher bacterial counts in the liver and spleen of the three chicken lineages and caecal contents from the broiler chickens, whereas STMΔttrAΔpduA presented higher counts in the liver and spleen of the broiler and brown-egg chickens for 28 days post-infection (P < 0.05). The ttrA and pduA genes do not appear to be major virulence determinants in faecal excretion or invasiveness for SE and STM in chickens. RESEARCH HIGHLIGHTSttrA and pudA do not impair gut colonization or systemic infection in chicks.Mutant strains were present in higher numbers in broilers than in laying chicks.Mutants of SE and STM showed greater pathogenicity in broiler chicks than layers.

11.
Acta Pharm Sin B ; 10(11): 2075-2109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33304780

RESUMO

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

12.
Bioresour Technol ; 279: 140-148, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30716606

RESUMO

The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.


Assuntos
Reatores Biológicos , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Silicones/farmacologia , Biomassa , Clostridium/metabolismo , Klebsiella pneumoniae/metabolismo
13.
Bioprocess Biosyst Eng ; 41(12): 1807-1816, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30167787

RESUMO

The production of 1,3-propanediol from crude glycerol and mixed anaerobic sludge was investigated in batch experiments and continuous reactors. Using a 23 complete factorial design, the effects of the concentration of glycerol (22-30 g L-1), KH2PO4 (1.50-2.00 g L-1), and vitamin B12 (7-8 mg L-1) were examined in batch reactors. As an evaluated response, the highest 1,3-PD yields occurred for high concentrations of vitamin B12 and low levels of KH2PO4, reaching 0.57 g g-1 glycerol consumed. The variable glycerol concentration was not significant in the studied range. In addition, the condition that provided the best 1,3-PD yield was applied to an anaerobic fluidized bed reactor fed with crude glycerol (26.0 g L-1), which was monitored as the hydraulic retention time (HRT) decreased from 36 to 12 h. The greatest 1,3-PD yield, of 0.31 g g-1 glycerol, was obtained with an HRT of 28 h.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Anaerobiose , Glicerol/farmacologia , Fosfatos/farmacologia , Compostos de Potássio/farmacologia , Vitamina B 12/farmacologia
14.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030227

RESUMO

Manipulation of global regulators is one of the strategies used for the construction of bacterial strains suitable for the synthesis of bioproducts. However, the pleiotropic effects of these regulators can vary under different conditions and are often strain dependent. This study analyzed the effects of ArcA, CreC, Cra, and Rob using single deletion mutants of the well-characterized and completely sequenced Escherichia coli strain BW25113. Comparison of the effects of each regulator on the synthesis of major extracellular metabolites, tolerance to several compounds, and synthesis of native and nonnative bioproducts under different growth conditions allowed the discrimination of the particular phenotypes that can be attributed to the individual mutants and singled out Cra and ArcA as the regulators with the most important effects on bacterial metabolism. These data were used to identify the most suitable backgrounds for the synthesis of the reduced bioproducts succinate and 1,3-propanediol (1,3-PDO). The Δcra mutant was further modified to enhance succinate synthesis by the addition of enzymes that increase NADH and CO2 availability, achieving an 80% increase compared to the parental strain. Production of 1,3-PDO in the ΔarcA mutant was optimized by overexpression of PhaP, which increased more than twice the amount of the diol compared to the wild type in a semidefined medium using glycerol, resulting in 24 g · liter-1 of 1,3-PDO after 48 h, with a volumetric productivity of 0.5 g · liter-1 h-1IMPORTANCE Although the effects of many global regulators, especially ArcA and Cra, have been studied in Escherichia coli, the metabolic changes caused by the absence of global regulators have been observed to differ between strains. This scenario complicates the identification of the individual effects of the regulators, which is essential for the design of metabolic engineering strategies. The genome of Escherichia coli BW25113 has been completely sequenced and does not contain additional mutations that could mask or interfere with the effects of the global regulator mutations. The uniform genetic background of the Keio collection mutants enabled the characterization of the physiological consequences of altered carbon and redox fluxes caused by each global regulator deletion, eliminating possible strain-dependent results. As a proof of concept, Δcra and ΔarcA mutants were subjected to further manipulations to obtain large amounts of succinate and 1,3-PDO, demonstrating that the metabolic backgrounds of the mutants were suitable for the synthesis of bioproducts.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Glicerol/metabolismo , Engenharia Metabólica , Propilenoglicóis/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Repressoras/genética , Ácido Succínico/metabolismo
15.
BMC Syst Biol ; 11(1): 58, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28571567

RESUMO

BACKGROUND: The increase in glycerol obtained as a byproduct of biodiesel has encouraged the production of new industrial products, such as 1,3-propanediol (PDO), using biotechnological transformation via bacteria like Clostridium butyricum. However, despite the increasing role of Clostridium butyricum as a bio-production platform, its metabolism remains poorly modeled. RESULTS: We reconstructed iCbu641, the first genome-scale metabolic (GSM) model of a PDO producer Clostridium strain, which included 641 genes, 365 enzymes, 891 reactions, and 701 metabolites. We found an enzyme expression prediction of nearly 84% after comparison of proteomic data with flux distribution estimation using flux balance analysis (FBA). The remaining 16% corresponded to enzymes directionally coupled to growth, according to flux coupling findings (FCF). The fermentation data validation also revealed different phenotype states that depended on culture media conditions; for example, Clostridium maximizes its biomass yield per enzyme usage under glycerol limitation. By contrast, under glycerol excess conditions, Clostridium grows sub-optimally, maximizing biomass yield while minimizing both enzyme usage and ATP production. We further evaluated perturbations in the GSM model through enzyme deletions and variations in biomass composition. The GSM predictions showed no significant increase in PDO production, suggesting a robustness to perturbations in the GSM model. We used the experimental results to predict that co-fermentation was a better alternative than iCbu641 perturbations for improving PDO yields. CONCLUSIONS: The agreement between the predicted and experimental values allows the use of the GSM model constructed for the PDO-producing Clostridium strain to propose new scenarios for PDO production, such as dynamic simulations, thereby reducing the time and costs associated with experimentation.


Assuntos
Trifosfato de Adenosina/biossíntese , Clostridium butyricum/crescimento & desenvolvimento , Clostridium butyricum/metabolismo , Glicerol/farmacologia , Análise do Fluxo Metabólico , Clostridium butyricum/efeitos dos fármacos , Clostridium butyricum/enzimologia , Técnicas de Cultura , Modelos Biológicos , Propilenoglicóis/metabolismo
16.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476770

RESUMO

The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Lectinas de Plantas/metabolismo , Propilenoglicóis/metabolismo , Azotobacter/genética , Proteínas de Bactérias/genética , Biocombustíveis , Lectinas de Plantas/genética
17.
Appl Biochem Biotechnol ; 183(3): 712-728, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28321784

RESUMO

This study evaluated the production of hydrogen and propionic acid in an expanded granular sludge bed (EGSB) reactor by co-fermentation of cheese whey (CW) and crude glycerol (CG). The reactor was operated at hydraulic retention time (HRT) of 8 h by changing the CW/CG ratio from 5:1 to 5:2, 5:3, 5:4, and 5:5. At the ratio of 5:5, HRT was reduced from 8 to 0.5 h. The maximum hydrogen yield of 0.120 mmol H2 g COD-1 was observed at the CW/CG ratio of 5:1. Increasing the CG concentration repressed hydrogen production in favor of propionic acid, with a maximum yield of 6.19 mmol HPr g COD-1 at the CW/CG ratio of 5:3. Moreover, by reducing HRT of 8 to 0.5 h, the hydrogen production rate was increased to a maximum value of 42.5 mL H2 h-1 L-1at HRT of 0.5 h. The major metabolites were propionate, 1,3-propanediol, acetate, butyrate, and lactate.


Assuntos
Reatores Biológicos/microbiologia , Fermentação , Glicerol/metabolismo , Hidrogênio/metabolismo , Propionatos/metabolismo , Esgotos/microbiologia , Soro do Leite/metabolismo , Biocombustíveis/microbiologia , Queijo , Cinética
18.
Electron. j. biotechnol ; Electron. j. biotechnol;26: 60-63, Mar. 2017. ilus, ilus
Artigo em Inglês | LILACS | ID: biblio-1009760

RESUMO

Background: New directions of research on lactic acid bacteria include investigation of metabolic pathways for the synthesis and/or metabolism of 1,2-propanediol, commonly used in the food and chemical industry, medicine, pharmacy and cosmetology as well as agriculture. The objective of this study was to compare the capacity of strains representing three diverse heterofermentative species belonging to the genus Lactobacillus to synthesize and/or transform 1,2-PD as well as to suggest new directions of research aimed at commercial use of this metabolite. Results: The novel strain of Lactobacillus buchneri A KKP 2047p, characterized as exhibiting an unusual trait for that species in the form of capacity to metabolize 1,2-PD, grew poorly in a medium containing 1,2-PD as a sole carbon source. The supplementation with glucose facilitated rapid growth of bacteria and use of 1,2-PD for the synthesis of propionic acid. A similar observation was noted for Lactobacillus reuteri. On the other hand, Lactobacillus diolivorans effectively metabolized 1,2-PD which was the sole carbon source in the medium, and the addition of glucose inhibited the synthesis of propionic acid. The experiments also investigated the effect of cobalamin as a diol dehydratase coenzyme involved in the propionic acid synthesis from 1,2-PD whose addition promoted the yield of the reaction in the case of all tested strains. Conclusions: All tested isolates showed the ability to effectively metabolize 1,2-PD (in the presence of cobalamin) and its conversion to propionic acid, which reveals that investigated bacteria meet the essential requirements of microorganisms with a potential application.


Assuntos
Propilenoglicol/metabolismo , Lactobacillus/metabolismo , Propionatos , Vitamina B 12/metabolismo , Ácido Láctico , Propilenoglicol/síntese química , Fermentação , Glucose
19.
Environ Technol ; 37(23): 2984-92, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27230401

RESUMO

The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.


Assuntos
Clostridium acetobutylicum/metabolismo , Glicerol/metabolismo , Ácidos Acíclicos/metabolismo , Animais , Cerveja , Etanol/metabolismo , Fermentação , Conteúdo Gastrointestinal , Cabras , Hidrogênio/metabolismo , Resíduos Industriais , Propilenoglicóis/metabolismo , Rúmen , Esgotos
20.
Univ. sci ; 20(1): 129-140, ene.-abr. 2015. ilus, tab
Artigo em Inglês | LILACS-Express | LILACS | ID: lil-752936

RESUMO

We designed a strategy for the sequencing and bioinformatical characterization of the 1,3-propanediol operon regulator genes from the Colombian Clostridium sp. strain IBUN13A, which is taxonomically related to Clostridium butyricum. Three genes are proposed to be involved in the operon's transcriptional activity, the dhaS and dhaA genes through a two-component system and the third gene named dhaY, which encodes a putative transcriptional regulator similar to the domains of the dhaS/A system. Phylogenetic analyses indicated that the predicted proteins had a modular structure consisting of domains homologous to different signal transduction systems, but had significant differences concerning their conserved residues, pointing to the possibility that they constitute ancestral domains. In accordance with the prediction of functions, we propose a mechanism of regulation of the proteins studied of the 1,3-propanediol operon of the native strain, as a response to the presence of glycerol in the medium, which provides valuable information on the overall regulation of the glycerol metabolism in Clostridium sp.


Se diseñó una estrategia de amplificación, secuenciación y caracterización bioinformática de los genes reguladores del operón 1,3-propanediol (1,3-PD) de la cepa nativa colombiana Clostridium sp. IBUN 13A, relacionada taxonómicamente con Clostridium butyricum. Se identificaron tres genes que pueden estar involucrados en la regulación transcripcional de dicho operón: los genes dhaS y dhaA -a través de un sistema de transducción de señales de dos componentes-y un tercer gen que se denominó dhaY, que codifica para un regulador transcripcional putativo, similar a los dominios presentes en las proteínas del sistema DhaS/A. Los análisis filogenéticos indican que las proteínas predichas presentan una estructura modular con dominios homólogos a diferentes sistemas de transducción de señales, pero muestran diferencias importantes en los residuos conservados, lo que sugiere que podrían ser estos los dominios ancestrales. La predicción de funciones postula un mecanismo de regulación de las proteínas estudiadas sobre el promotor del operón 1,3-PD de la cepa nativa como respuesta a la presencia de glicerol en el medio, lo cual aporta información importante sobre la regulación global del metabolismo del glicerol en Clostridium sp.


Nesta pesquisa foi feita uma estratégia para a amplificacäo, sequenciamento e caracterizacäo bioinformática dos genes reguladores do operon 1,3 propanodiol (1,3-PD) da cepa colombiana Clostridium sp. IBUN 13A, relacionada taxonomicamente com o Clostridium butyricum. Tèm sido identificados tres genes que podem estar envolvidos na regulacáo transcricional do operon. Os genes dhaS e dhaA por meio de um sistema de dois componentes e o terceiro gene nomeado de dhaY, que codifica para um regulador transcridonal putativo, parecido com os dominios presentes nas proteínas do sistema DhaS/A. A análise filogenètica mostra que estas proteínas apresentam uma estrutura modular com dominios homólogos a diferentes sistemas de traducáo de sinais, mas pressupöem diferencas importantes nos residuos conservados, indicando provavelmente que possam constituir os dominios ancestrais. De acordo com a predicáo de funcöes, é postulado um mecanismo de regulacáo do sistema DhaS/A, DhaY sobre o promotor do operon 1,3-DP da cepa nativa, como resposta à presenca de glicerol no meio, aportando informacöes importantes da regulacáo global do metabolismo do glicerol no Clostridium sp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA