Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 20(1): 114, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912143

RESUMO

BACKGROUND: Understanding the structure and variability of adaptive loci such as the major histocompatibility complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover (Charadrius nivosus) across its broad geographic range. RESULTS: We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250 individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles (mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection. The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto Rico, lineage tenuirostris). CONCLUSION: Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic structure previously observed at neutral genetic markers in this species.


Assuntos
Charadriiformes , Genética Populacional , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Seleção Genética , Alelos , Animais , Charadriiformes/genética , Espécies em Perigo de Extinção , Variação Genética , Filogenia
2.
Rev Bras Bot ; 41(4): 699-709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32981986

RESUMO

Urochloa (syn.-Brachiaria s.s.) is one of the most important tropical forages that transformed livestock industries in Australia and South America. Farmers in Africa are increasingly interested in growing Urochloa to support the burgeoning livestock business, but the lack of cultivars adapted to African environments has been a major challenge. Therefore, this study examines genetic diversity of Tanzanian Urochloa accessions to provide essential information for establishing a Urochloa breeding program in Africa. A total of 36 historical Urochloa accessions initially collected from Tanzania in 1985 were analyzed for genetic variation using 24 SSR markers along with six South American commercial cultivars. These markers detected 407 alleles in the 36 Tanzania accessions and 6 commercial cultivars. Markers were highly informative with an average polymorphic information content of 0.79. The analysis of molecular variance revealed high genetic variation within individual accessions in a species (92%), fixation index of 0.05 and gene flow estimate of 4.77 showed a low genetic differentiation and a high level of gene flow among populations. An unweighted neighbor-joining tree grouped the 36 accessions and six commercial cultivars into three main clusters. The clustering of test accessions did not follow geographical origin. Similarly, population structure analysis grouped the 42 tested genotypes into three major gene pools. The results showed the Urochloa brizantha (A. Rich.) Stapf population has the highest genetic diversity (I = 0.94) with high utility in the Urochloa breeding and conservation program. As the Urochloa accessions analyzed in this study represented only 3 of 31 regions of Tanzania, further collection and characterization of materials from wider geographical areas are necessary to comprehend the whole Urochloa diversity in Tanzania.

3.
Evolution ; 70(7): 1435-49, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27251954

RESUMO

Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal.


Assuntos
DNA Mitocondrial/genética , Elapidae/genética , Fluxo Gênico , Haplótipos , Animais , Evolução Molecular , México , Filogenia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA