Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530376

RESUMO

Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations-RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.


Assuntos
Cromossomos , Polimorfismo Genético , Ruminantes/genética , Animais , Cruzamento , Coloração Cromossômica , Feminino , Hibridização Genética , Hibridização in Situ Fluorescente , Masculino
2.
J Fish Biol ; 85(5): 1682-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25263542

RESUMO

In this study, genetic differentiation between karyomorphs A (2n = 42) and D (2n = 39/40) of the wolf fish Hoplias malabaricus, which is comprised of several cryptic species that present a wide variety of diploid chromosome numbers and sex chromosome systems, resulting in the identification of seven distinct karyomorphs (A-G), was investigated using a combination of molecular and cytogenetic tools. Deep sequence divergences for both karyomorphs were observed and indicate a long period of reproductive isolation between karyomorphs A and D. Additionally, one individual with 61 chromosomes was identified, which, as far as is known, is the first case of natural triploidy resulting from the hybridization between these highly differentiated karyomorphs of H. malabaricus. Molecular and cytogenetic analyses revealed that this allotriploid specimen carries two sets of maternal chromosomes from karyomorph D (2n = 40) and one set of chromosomes from karyomorph A (n = 21). Moreover, ribosomal sites and active nucleolus organizer regions from both parental contributors were found in the triploid hybrid. Considering the significant genetic distances between karyomorphs A and D, one of the primary reasons for the lack of recurrent reports of hybridization in the H. malabaricus species complex may be due to post-zygotic barriers, such as hybrid sterility or unviability.


Assuntos
Caraciformes/genética , Hibridização Genética , Triploidia , Animais , Brasil , Cromossomos/genética , Cariótipo , Fenótipo , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA