Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Cell Biochem ; 120(4): 6015-6025, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320934

RESUMO

Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2∆Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.


Assuntos
Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Peptídeos/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Inativação Gênica , Células HeLa , Humanos , Imunoprecipitação , Espectrometria de Massas , Fatores de Iniciação de Peptídeos/genética , Fosforilação , Reação em Cadeia da Polimerase , Ligação Proteica , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
2.
J Cell Biochem, v. 120, n. 4, p. 6015-6025, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2682

RESUMO

Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2?Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.

3.
J Pept Sci ; 19(12): 792-800, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24243601

RESUMO

In the selection or design of antimicrobial peptides, the key role played by cationic amino acids and chain length on the inhibitory potency and specificity is not clear. A fundamental study was conducted using chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Their effect on growth inhibition was evaluated over a wide range of Gram-positive bacteria at different levels of concentration. Interestingly, at lower concentrations (10 µM), Lys homopeptides with odd number of residues, especially with 11 residues, showed a broader inhibitory activity than those with even number of residues. At higher peptide concentrations (>20 µM), the inhibitory activity of Lys homopeptides was directly related to the number of residues in the chain. In contrast, Arg homopeptides, at lower concentrations, did not exhibit a defined pattern of bacterial inhibition related to the number of residues; however, at higher concentrations (>20 µM), the inhibitory effects were more pronounced. Lys homopeptides at concentrations up to 300 µM showed a remarkably lower toxicity against CHSE-214 cells. Arg homopeptides exhibited negligible cytotoxicity up to chain length of 11 residues at concentrations lower than 100 µM, but an abrupt increase in toxicity resulted when the peptide chain length reached 12 amino acid residues and higher concentrations. All synthesized homopeptides displayed characteristic polyproline II helix conformation in both buffer and liposomes, as shown by CD spectroscopy. This result suggests that short Lys homopeptides with an odd number of residues (9 and 11) have a broad spectrum of activity against Gram-positive bacterial cells compared with Arg homopeptides, which in turn showed a considerably higher selectivity toward those cells. By investigating the differences between Lys and Arg homopeptides, this study contributes to the understanding of their mechanism of growth inhibition and selectivity. Thus, it provides further guidelines for a rational design of short antimicrobial peptides.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos/farmacologia , Polilisina/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Cátions , Linhagem Celular , Lipossomos/química , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/toxicidade , Polilisina/química , Polilisina/toxicidade , Estrutura Secundária de Proteína , Salmão , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA