Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
AMB Express ; 12(1): 102, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925495

RESUMO

This study aims to produce, characterize, and assess the antimicrobial activity and cytotoxicity of polymer blends based on chitosan (CT) and fish collagen (COL) produced by different precipitation methods. Polymer blends were obtained in alkaline (NaOH), saline (NaCl), and alkaline/saline (NaOH/NaCl) solutions with different CT:COL concentration ratios (20:80, 50:50, and 80:20). The polymer blends were characterized by various physicochemical methods and subsequently evaluated in terms of their in vitro antimicrobial and cytotoxicity activity. In this study, the degree of chitosan deacetylation was 82%. The total hydroxyproline and collagen content in the fish matrix was 47.56 mg. g-1 and 394.75 mg. g-1, respectively. The highest yield was 44% and was obtained for a CT:COL (80:20) blend prepared by precipitation in NaOH. High concentrations of hydroxyproline and collagen in the blends were observed when NaOH precipitation was used. Microbiological analysis revealed that the strains used in this work were sensitive to the biomaterial; this sensitivity was dose-dependent and increased with increasing chitosan concentration in the products. The biocompatibility test showed that the blends did not reduce the viability of fibroblast cells after 48 h of culture. An analysis of the microbiological activity of the all-polymer blends showed a decrease in the values of minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) for S. aureus and P. aeruginosa. The blends showed biocompatibility with NIH-3T3 murine fibroblast cells and demonstrated their potential for use in biomedical applications such as wound healing, implants, and scaffolds.

2.
Materials (Basel) ; 15(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35407835

RESUMO

In this work, polyamide 6 (PA6) properties were tailored and improved using a maleic anhydride-grafted acrylonitrile-butadiene-styrene terpolymer (ABS-MA). The PA6/ABS-MA blends were prepared using a co-rotational twin-screw extruder. Subsequently, the extruded pellets were injection-molded. Blends were characterized by torque rheometry, the Molau test, Fourier transform infrared spectroscopy (FTIR), impact strength, tensile strength, Heat Deflection Temperature (HDT), Differential Scanning Calorimetry (DSC), Thermogravimetry (TG), Contact Angle, Scanning Electron Microscopy (SEM), and water absorption experiments. The most significant balance of properties, within the analyzed content range (5, 7.5, and 10 wt.%), was obtained for the PA6/ABS-MA (10%) blend, indicating that even low concentrations of ABS-MA can improve the properties of PA6. Significant increases in impact strength and elongation at break have been achieved compared with PA6. The elastic modulus, tensile strength, HDT, and thermal stability properties of the PA6/ABS-MA blends remained at high levels, indicating that maleic anhydride interacted with amine end-groups of PA6. Torque rheometry, the Molau test, and SEM analysis suggested interactions in the PA6/ABS-MA system, confirming the high properties obtained. Additionally, there was a decrease in water absorption and the diffusion coefficient of the PA6/ABS-MA blends, corroborating the contact angle analysis.

3.
Polymers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960830

RESUMO

In this study, polymer blends with a mechanical property balance based on poly(lactic acid) (PLA), stiff polymer, and elongated polymer were developed. First, the binary blends PLA-elongated polymer [ethyl vinyl acetate (EVA) or polyethylene], or PLA-stiff polymer [polystyrene or poly(styrene-co-methyl methacrylate) (SMMA)] blends were studied using dynamic mechanic analysis (DMA) and analyzed using Minitab statistical software to determine the factors influencing the elongation or stiffness of the blends. Then, ternary blends such as elongation-poly(lactic acid)-stiff, were made from the binary blends that presented optimal performance. In addition, three blends [EVA-PLA-SMMA (EPS)] were elaborated by studying the mixing time (5, 15, and 15 min) and the added time of the SMMA (0, 0, and 10 min). Specifically, the mixing time for EPS 1, EPS 2, and EPS 3 is 5 min, 15 min, and 15 min (first EVA + PLA for 10 min, plus 5 min PLA-EVA and SMMA), respectively. Mechanical, thermal, rheological, and morphological properties of the blends were studied. According to DMA, the results show an increase in elongation at break (εb) and do not decrease the elastic module of poly(lactic acid). Nevertheless, EPS 3 excels in all properties, with an εb of 67% and modulus of elasticity similar to PLA. SMMA has a significant role as a compatibilizing agent and improves PLA processability.

4.
Drug Dev Ind Pharm ; 47(10): 1556-1567, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34821528

RESUMO

The use of polymeric blends is a potential strategy to obtain novel nanotechnological formulations aiming at drug delivery systems. Saquinavir, an antiretroviral drug, was chosen as a model drug for the development of new stable liquid formulations with unpleasant taste masking properties. Three formulations containing different polymeric ratios (1:3, 1:1 and 3:1) were prepared and properly characterized by particle size distribution, zeta potential, pH, drug content and encapsulation efficiency measurements. The stability was verified by monitoring the zeta potential, particle size distribution, polydispersity index and drug content by 90 days. The light backscattering analysis was used to early identify possible phenomena of instability in the formulations. The in vitro drug release and saquinavir cytotoxicity were evaluated. The in vitro and in vivo taste masking properties were studied using an electronic tongue and a human sensory panel. All formulations presented nanometric sizes around 200 nm and encapsulation efficiency above 99%. The parameters evaluated for stability remained constant throughout 90 days. The in vitro tests showed a controlled drug release and absence of toxic effects on human T lymphocytes. The electronic tongue experiment showed taste differences for all formulations in comparison to drug solutions, with a more pronounced difference for the formulation with higher polycaprolactone content (3:1). This formulation was chosen for in vivo sensory panel evaluation which results corroborated the electronic tongue experiments. In conclusion, the polymer blend nanoformulation developed herein showed the promising application to incorporate drugs aiming at pharmaceutical taste-masking properties.


Assuntos
Saquinavir , Paladar , Humanos , Preparações Farmacêuticas/química , Poliésteres , Polímeros , Saquinavir/farmacologia
5.
Polymers (Basel) ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35012156

RESUMO

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.

6.
Mater Sci Eng C Mater Biol Appl ; 119: 111643, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321681

RESUMO

Systems composed of bioadhesive and thermoresponsive polymers can combine in situ gelation with bio/mucoadhesion, enhancing retention of topically applied drugs. The effect of bioadhesive sodium carboxymethylcellulose (NaCMC) and hydroxypropyl methylcellulose cellulose (HPMC) on the properties of thermoresponsive Pluronic® F127 (F127) was explored, including micellization and the mucoadhesion. A computational analysis between these polymers and their molecular interactions were also studied, rationalising the design of improved binary polymeric systems for pharmaceutical and biomedical applications. The morphological characterization of polymeric systems was conducted by SEM. DSC analysis was used to investigate the crystallization and micellization enthalpy of F127 and the mixed systems. Micelle size measurements and TEM micrographs allowed for investigation into the interference of cellulose derivatives on F127 micellization. Both cellulose derivatives reduced the critical micellar concentration and enthalpy of micellization of F127, altering hydrodynamic diameters of the aggregates. Mucoadhesion performance was useful to select the best systems for mucosal application. The systems composed of 17.5% (w/w) F127 and 3% (w/w) HPMC or 1% (w/w) NaCMC are promising as topical drug delivery systems, mainly on mucosal surfaces. They were biocompatible when tested against Artemia salina, and also able to release a model of hydrophilic drug in a controlled manner.


Assuntos
Micelas , Poloxâmero , Derivados da Hipromelose , Metilcelulose , Reologia
7.
Polymers (Basel) ; 12(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050501

RESUMO

Compression molded biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) at varying weights were prepared, and their relevant properties for packaging applications are here reported. The melt rheology of the blends was first studied, and the binary PBS/PBAT blends exhibited marked shear thinning and complex thermoreological behavior, due to the formation of a co-continuous morphology in the 50 wt% blend. The films were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), mechanical tensile tests, scanning electron microscopy (SEM), and oxygen and water vapor permeability. PBS crystallization was inhibited in the blends with higher contents of PBAT, and FTIR and SEM analysis suggested that limited interactions occur between the two polymer phases. The films showed increasing stiffness as the PBS percentage increased; further, a sharp decrease in elongation at break was noticed for the films containing percentages of PBS greater than 25 wt%. Gas permeability decreased with increasing PBS content, indicating that the barrier properties of PBS can be tuned by blending with PBAT. The results obtained point out that the blend containing 25 wt% PBS is a good compromise between elastic modulus (135 MPa) and deformation at break (390%) values. Overall, PBS/PBAT blends represent an alternative for packaging films, as they combine biodegradability, good barrier properties and reasonable mechanical behavior.

8.
Food Chem ; 309: 125566, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31706674

RESUMO

Nanostructured coatings made with chitosan (100%Q), alginate (100%A) and blends of 50%Q-50%A; 90%Q-10%A and 90%A-10%Q, were added with (1%v/vgel) of nanoZnO and applied to guavas (Psidium guajava L.). After the coating application, fruits were stored for 15 days at 21 ±â€¯1 °C and 80 ±â€¯2% RH. To determine the effect on ripening process, fruits were submitted to water loss, texture, color, rot index, and physic-chemical assays. The results showed that coatings are able to prevent rot appearance in every sample, corroborating with the antibacterial action of nanoZnO. Coatings made with alginate and 90%A did not delay the maturation process, however, chitosan matrices (100%Q or 90%Q) protected fruits against excessive mass loss and retarded physic-chemical changes related to maturation. The experiment or study showed that it is possible to extend guava shelf life with ZnO nanostructured coatings with 100%Q or 90%Q-10%A for up to twenty days versus seven days of uncoated fruits.


Assuntos
Antibacterianos/farmacologia , Filmes Comestíveis , Conservação de Alimentos/métodos , Frutas , Psidium , Alginatos/farmacologia , Quitosana/farmacologia , Nanopartículas/química , Óxido de Zinco/farmacologia
9.
J Agric Food Chem ; 66(38): 10033-10040, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30036472

RESUMO

Individual films of polyhydroxyalkanoates (PHA) and polylactic acid (PLA) and their blends were developed by solvent casting. PHA was obtained from activated sludges from a wastewater-treatment system at a laboratory scale. This work focused on analyzing the microstructural properties and thermal behaviors of individual films of PHA and PLA as well as those of their blends. The behaviors of the biodegradation processes of the individual films and blends were examined from a microstructural point of view. ATR-FTIR spectra indicated the existence of weak molecular interactions between the polymers. The formulation of blend films improved the crystallinity of PLA; additionally, it induced the polymer-recrystallization phenomenon, because crystallized PHA acted as a PLA-nucleating agent. This phenomenon explains the improvements in the films' water-vapor-barrier properties. The blends exposed to a biodegradation process showed an intermediate behavior between PLA and PHA, leading to a consistent basis for designing systems tailored to a particular purpose.


Assuntos
Poliésteres/química , Poli-Hidroxialcanoatos/química , Temperatura Alta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
10.
Carbohydr Polym ; 136: 210-5, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572348

RESUMO

The great quantity of synthetic plastic discarded inappropriately in the environment is forcing the search for materials that can be reprocessable and biodegradable. Blends between synthetic polymers and natural and biodegradable polymers can be good candidates of such novel materials because they can combine processability with biodegradation and the use of renewable raw materials. However, traditional polymers usually present high levels of recyclability and use the well-established recycling infrastructure that can eventually be affected by the introduction of systems containing natural polymers. Thus, this work aims to evaluate the effect of reprocessing (simulated here by multiple extrusions) on the structure and properties of a low density polyethylene/thermoplastic starch (LDPE/TPS) blend compared to LDPE. The results indicated that multiple extrusion steps led to a reduction in the average size of the starch-rich phases of LDPE/TPS blends and minor changes in the mechanical and rheological properties of the materials. Such results suggest that the LDPE/TPS blend presents similar reprocessability to the LDPE for the experimental conditions used.


Assuntos
Polietileno/química , Amido/química , Temperatura , Fenômenos Mecânicos
11.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(4): 783-794, July-Aug. 2011. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-595633

RESUMO

The aim of this work was to study the production of poly-3-hydroxybutyrate (PHB) under nitrogen limited conditions by Bacillus sphaericus NII 0838 using crude glycerol from biodiesel industry as sole carbon source. Effect of various process parameters on PHB production such as glycerol concentration, inoculum size and pH of the medium were optimized. Characterization of extracted PHB was carried out by FT-IR, ¹H and 13C NMR. Results showed that the bacterial culture accumulated about 31 percent PHB in crude glycerol medium. The extracted PHB was blended with other polymers to improve its physical characteristics. The thermal properties of the polymer like melting temperature (Tm) and heat of fusion (ΔHf) were determined using DSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA