Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Bot ; 75(14): 4167-4170, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039837

RESUMO

Plants face the most diverse climatic conditions throughout their life cycle. As sessile organisms, they are remarkably resilient to adverse environments, which have been exacerbated in the current context of global change. The way in which plants sense and respond to various types of abiotic stresses varies depending on the severity of the stress and the developmental stage of the plant, affecting both vegetative and reproductive aspects. Understanding how plants respond and adapt to a changing environment is crucial for predicting and mitigating the impacts of climate change on ecosystems and ensuring the future survival and reproduction of plant species.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Adaptação Fisiológica , Ecossistema , Meio Ambiente , Desenvolvimento Vegetal/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Reprodução , Estresse Fisiológico
2.
CienciaUAT ; 18(2): 6-18, ene.-jun. 2024. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569018

RESUMO

Resumen: La apropiada organogénesis de las plantas, durante su ciclo de vida, propicia su desarrollo y la adaptación a diferentes condiciones am bientales. Diversas fitohormonas regulan el desarrollo vegetal, pero la auxina denominada ácido indol-3-acético (AIA) es una de las más importantes. El AIA se sintetiza en la parte aérea de la planta y se moviliza a los tejidos demandantes por un transporte rápido que utiliza el floema y por el transporte polar de auxinas (TPA). Recientemente, se ha demostrado que las auxinas también se movilizan mediante el transporte simplástico (TS) a través de los plasmodesmos (PD), cuya apertura o cierre está regulada respectivamente por la degradación o la deposición de la callosa. El objetivo del presente trabajo fue profundizar en los avances sobre la participación del transporte simplástico de las auxinas durante el desarrollo vegetal, así como la degradación o deposición de la callosa, en el cierre o apertura de los PD, para regular el desarrollo de algunos órganos de Arabidopsis thaliana. La intervención de las proteínas PDLP5 es determinante para la deposición de la callosa en los PD, lo que regula la distribución de la auxina e impacta en la formación radicular, especialmente en las raíces laterales. La participación del TS es importante para desarrollar la actividad de las auxinas, lo cual favorece la formación radicular, necesaria en la mejora de absorción de nutrientes de las plantas. Este conocimiento puede ser utilizado para mejorar las plantas de interés agronómico.


Abstract: The appropriate organogenesis of plants during their life cycle promotes their development and adaptation to different environmental conditions. Various phytohormones regulate plant development but auxin, called Indole-3-Acetic Acid (IAA), is one of the most important. IAA is synthesized in the aerial part of plant and is mobilized to the demanding tissues by a rapid transport using the phloem and by the polar auxin transport (PAT). Recently, it has been shown that auxins also are mobilized by a symplastic transport (ST) through plasmodesmata (PD), which opening or closing is regulated by the callose degradation or deposition respectively. The objective of the present work was to deepen the analysis on the participation of symplastic transport of auxins during plant development, as well in the callose degradation or deposition, in the closing or opening of the PD, that regulates the development of some organs of Arabidopsis thaliana. The intervention of PDLP5 proteins is decisive for the callose deposition in the PD, which regulates the auxin distribution and impacts root formation, especially at the lateral roots. The participation of TS is important to develop the auxin activity, which favors root formation, necessary for the improvement plant nutrient absorption. This knowledge can be used to improve development plants of agronomic interest.

3.
Planta ; 259(5): 117, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592421

RESUMO

MAIN CONCLUSION: In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.


Assuntos
Arabidopsis , Genoma de Planta , Filogenia , Genoma de Planta/genética , Genômica , Arabidopsis/genética , Domesticação
4.
J Exp Bot ; 75(14): 4360-4372, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666596

RESUMO

Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Meio Ambiente , Plantas/metabolismo , Plantas/genética
5.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475450

RESUMO

Grafting, the careful selection of rootstocks and scions, has played a crucial role maintaining Chilean avocado fruit quality standards in a scenario in which climate change and drought-related issues have considerably decreased avocado fruit production in the last fifteen years. The historical use of seedling rootstocks in Chile has experienced a recent shift towards clonal rootstocks, driven by the potential to produce more consistent and predictable crops. This research aims to compare Hass avocado plants grafted on Mexicola seedling and Dusa® clonal rootstocks in a soilless and protected system using (i) a differential expression analysis of root and leaf samples and (ii) a fruit transcriptomic and metabolomic integration analysis to improve our understanding of rootstock-scion interaction and its impact on avocado tree performance and fruit quality. The results demonstrated that no significant transcriptomic and metabolomic differences were identified at fruit level in the ready-to-eat (RTE) stage for Hass avocado fruit from both rootstocks. However, Hass avocados grafted on the clonal rootstock showed greater aerial growth and slightly increased fruit size than the seedling rootstock due to the enrichment of cell wall-remodeling genes as revealed in leaves and fruit at harvest stage.

6.
iScience ; 26(7): 107144, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534167

RESUMO

The molecular mechanism of beneficial bacterium Azospirillum brasilense-mediated root developmental remain elusive. A. brasilense elicited extensively transcriptional changes but inhibited primary root elongation in Arabidopsis. By analyzing root cell type-specific developmental markers, we demonstrated that A. brasilense affected neither overall organization nor cell division of primary root meristem. The cessation of primary root resulted from reduction of cell elongation, which is probably because of bacterially activated peroxidase that will lead to cell wall cross-linking at consuming of H2O2. The activated peroxidase combined with downregulated cell wall loosening enzymes consequently led to cell wall thickness, whereas inhibiting peroxidase restored root growth under A. brasilense inoculation. We further showed that peroxidase activity was probably promoted by cadaverine secreted by A. brasilense. These results suggest that A. brasilense inhibits root elongation by activating peroxidase and inducing cell wall modification in Arabidopsis, in which cadaverine released by A. brasilense is a potential signal compound.

7.
PeerJ ; 11: e14973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214086

RESUMO

De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.


Assuntos
Poaceae , Saccharum , Poaceae/metabolismo , Saccharum/genética , Tiamina , Fatores de Transcrição/genética , Folhas de Planta/metabolismo
8.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982512

RESUMO

TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Estresse Fisiológico , Proteínas de Arabidopsis/genética
9.
J Hazard Mater ; 448: 130813, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706487

RESUMO

This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.


Assuntos
Germinação , Plântula , Cádmio/toxicidade , Sementes
10.
J Exp Bot ; 74(7): 2251-2272, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36306285

RESUMO

Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest.


Assuntos
Processamento Alternativo , Arabidopsis , Arabidopsis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantas/genética , Plantas/metabolismo
11.
Planta ; 257(1): 12, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520227

RESUMO

MAIN CONCLUSION: ScHINT1 was identified at sugarcane SAM using subtractive libraries. Here, by bioinformatic tools, two-hybrid approach, and biochemical assays, we proposed that its role might be associated to control redox homeostasis. Such control is important for plant development and flowering transition, and this is ensured with some protein partners such as PAL and SBT that interact with ScHINT1. The shoot apical meristem transition from vegetative to reproductive is a crucial step for plants. In sugarcane (Saccharum spp.), this process is not well known, and it has an important impact on production due to field reduction. In view of this, ScHINT1 (Sugarcane HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN) was identified previously by subtractive cDNA libraries using Shoot Apical Meristem (SAM) by our group. This protein is a member of the HIT superfamily that was composed of hydrolase with an AMP site ligation. To better understand the role of ScHINT1 in sugarcane flowering, here its function in SAM was characterized using different approaches such as bioinformatics, two-hybrid assays, transgenic plants, and biochemical assays. ScHINT1 was conserved in plants, and it was grouped into four clades (HINT1, HINT2, HINT3, and HINT4). The 3D model proposed that ScHINT1 might be active as it was able to ligate to AMP subtract. Moreover, the two-hybrid approach identified two protein interactions: subtilase and phenylalanine ammonia-lyase. The evolutionary tree highlighted the relationships that each sequence has with specific subfamilies and different proteins. The 3D models constructed reveal structure conservation when compared with other PDB-related crystals, which indicates probable functional activity for the sugarcane models assessed. The interactome analysis showed a connection to different proteins that have antioxidative functions in apical meristems. Lastly, the transgenic plants with 35S::ScHINT1_AS (anti-sense orientation) produced more flowers than wild-type or 35S::ScHINT1_S (sense). Alpha-tocopherol and antioxidant enzymes measurement showed that their levels were higher in 35S::ScHINT_S plants than in 35S::ScHINT1_AS or wild-type plants. These results proposed that ScHINT1 might have an important role with other proteins in orchestrating this complex network for plant development and flowering.


Assuntos
Flores , Meristema , Meristema/genética , Plantas Geneticamente Modificadas/genética , Homeostase , Oxirredução , Monofosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas
12.
iScience ; 25(12): 105627, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465114

RESUMO

Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes.

13.
Front Plant Sci ; 13: 987919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247602

RESUMO

Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.

14.
Plant J ; 112(4): 881-896, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164819

RESUMO

Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fenótipo , Mutação , Regulação da Expressão Gênica de Plantas
15.
J Exp Bot ; 73(18): 6226-6240, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35710302

RESUMO

Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.


Assuntos
Secas , Germinação , Germinação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatidiletanolaminas , Sementes/genética , Sementes/metabolismo
16.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448804

RESUMO

Stem succulence evolved independently in many plant lineages as an adaptation to arid environments. One of the most interesting cases is the convergence between Cactaceae and Euphorbia, which have anatomical adaptations mostly to increase photosynthetic capability and water storage. Our goal was to describe the shoot development in two succulent species of Euphorbia using light microscopy coupled with high-resolution X-ray-computed tomography. Collateral cortical bundles were observed associated with the stem ribs in both species. The analysis of vasculature demonstrated that these bundles are, in fact, leaf traces that run axially along a portion of the internode. That structural pattern is due to an ontogenetic alteration. During shoot development, the leaf-bases remain adnate to the stem near the SAM, forming an axial component. When the internode elongates, the leaf bundles stretch as cortical bundles. The meristematic activity associated with the bundles forms the stem ribs, as leaf veins near the node, and induce rib formation along the entire internode even in the portion where the leaf traces join the stele. In addition, heterochronic shifts are also involved in the evolution of the shoot system in these Euphorbia, being related to early deciduous reduced leaves and the transference of the main photosynthetic function to the stem. This study demonstrates for the first time the influence of leaf developmental shifts and stem rib formation in Euphorbia and sheds new light on the evolution of stem succulence.

17.
Ann Bot ; 129(3): 331-342, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34888616

RESUMO

BACKGROUND AND AIMS: Balanophoraceae is one of the most bizarre and biologically interesting plant clades. It groups species with peculiar features that offers an opportunity for investigating several aspects of parasite plant development and morphogenesis. We analysed the development and the mature vegetative body of Lathrophytum peckoltii Eichler, focusing on the formation of the host-parasite interface. Additionally, we analysed how this parasitic interaction causes modifications to the anatomy of Paullinia uloptera Radlk and Serjania clematidifolia Cambess host roots. METHODS: Vegetative bodies of the parasite at different developmental stages were collected while infesting the roots of Sapindaceae vines. Non-parasitized host roots were also collected for comparison. Light, epifluorescence, confocal and scanning electron microscopy were used for the analysis. KEY RESULTS: The initial cells of the vegetative axis divide repeatedly, originating a parenchymatous matrix, which occupies the space from the cortex to the vascular cylinder of the host's root. In the peripheral layers of the matrix, located near the xylem of the host's roots, a few cells initiate the process of wall lignification, originating the parasitic bundle. The vascular cambium of the host's root changes the division plane and becomes composed of fusiform initials, forming the vascular bundle. The vegetative axis presents a dermal tissue similar to a phellem, a parenchymatous matrix and a vascular system with different origins. CONCLUSION: The parasite reproduces by endophytic development, in a manner similar to that observed for endoparasites. The strategy of late cell differentiation could aid the parasite in avoiding early detection and triggering of defence responses by the host. This development causes changes to the host root cambial activity, leading to the establishment of direct, vessel to vessel connection between host and parasite. We associate these changes with the cambium modularity and an influx of parasite-derived hormones into the host cambium.


Assuntos
Balanophoraceae , Sapindaceae , Câmbio , Raízes de Plantas , Xilema
18.
Mol Hortic ; 2(1): 12, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789497

RESUMO

Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.

19.
Plant Physiol Biochem ; 171: 26-37, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971953

RESUMO

In order to assist sustainable agriculture, new strategies and methods are being used based on the utilization of new natural molecules. These natural compounds can be used as potential natural crop protectors and growth promoters, and the elucidation of their modes/mechanisms of action can represent a big step towards cleaner agriculture free of agrochemicals. In the present paper, the mechanisms underlying the effects of exogenous resveratrol (R), a natural phytoalexin found in plants, on Lactuca sativa metabolism were investigated through physiological and metabolomic approaches. The results highlighted that R stimulates the growth of lettuce. A reduction of the O2⋅- production in R-treated seedlings and an increase in the photosynthesis efficiency was observed, indicated by a higher Fv/Fm. The metabolomic analysis of lettuce seedlings treated with R identified 116 metabolites related to galactose, amino acids, sugar and nucleotide sugar, and ascorbate and aldarate metabolisms. Increased content of some polyamines and several metabolites was also observed, which may have contributed to scavenging free radicals and activating antioxidant enzymes, thus reducing oxidative damage and improving PSII protection in R-treated seedlings.


Assuntos
Lactuca , Plântula , Antioxidantes/metabolismo , Lactuca/metabolismo , Fotossíntese , Resveratrol/farmacologia , Plântula/metabolismo
20.
Front Plant Sci ; 12: 563760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887878

RESUMO

The anaphase promoting complex/cyclosome (APC/C), a member of the E3 ubiquitin ligase family, plays an important role in recognizing the substrates to be ubiquitylated. Progression of anaphase, and therefore, of the cell cycle, is coordinated through cyclin degradation cycles dependent on proteolysis triggered by APC/C. The APC/C activity depends on the formation of a pocket comprising the catalytic subunits, APC2, APC11, and APC10. Among these, the role of APC11 outside the cell division cycle is poorly understood. Therefore, the goal of this work was to analyze the function of APC11 during plant development by characterizing apc11 knock-down mutant lines. Accordingly, we observed decreased apc11 expression in the mutant lines, followed by a reduction in meristem root size based on the cortical cell length, and an overall size diminishment throughout the development. Additionally, crosses of apc11-1 and amiR-apc11 with plants carrying a WUSCHEL-RELATED HOMEOBOX5 (WOX5) fluorescent marker showed a weakening of the green fluorescent protein-positive cells in the Quiescent Center. Moreover, plants with apc11-1 show a decreased leaf area, together with a decrease in the cell area when the shoot development was observed by kinematics analysis. Finally, we observed a decreased APC/C activity in the root and shoot meristems in crosses of pCYCB1;1:D-box-GUS with apc11-1 plants. Our results indicate that APC11 is important in the early stages of development, mediating meristematic architecture through APC/C activity affecting the overall plant growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA