Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(10): 2394-2408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32633032

RESUMO

Theories attempting to explain species coexistence in plant communities have argued in favour of species' capacities to occupy a multidimensional niche with spatial, temporal and biotic axes. We used the concept of hydrological niche segregation to learn how ecological niches are structured both spatially and temporally and whether small scale humidity gradients between adjacent niches are the main factor explaining water partitioning among tree species in a highly water-limited semiarid forest ecosystem. By combining geophysical methods, isotopic ecology, plant ecophysiology and anatomical measurements, we show how coexisting pine and oak species share, use and temporally switch between diverse spatially distinct niches by employing a set of functionally coupled plant traits in response to changing environmental signals. We identified four geospatial niches that turned into nine, when considering the temporal dynamics of the wetting/drying cycles in the substrate and the particular plant species adaptations to garner, transfer, store and use water. Under water scarcity, pine and oak exhibited water use segregation from different niches, yet under maximum drought when oak trees crossed physiological thresholds, niche overlap occurred. The identification of niches and mechanistic understanding of when and how species use them will help unify theories of plant coexistence and competition.


Assuntos
Ecossistema , Árvores/fisiologia , Desidratação , Meio Ambiente , Pinus/metabolismo , Pinus/fisiologia , Fenômenos Fisiológicos Vegetais , Caules de Planta/metabolismo , Quercus/metabolismo , Quercus/fisiologia , Chuva , Árvores/metabolismo , Xilema/metabolismo
2.
Tree Physiol ; 36(6): 712-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27013125

RESUMO

Although plant competition is recognized as a fundamental factor that limits survival and species coexistence, its relative importance on light capture efficiency and carbon gain is not well understood. Here, we propose a new framework to explain the effects of neighborhood structures and light availability on plant attributes and their effect on plant performance in two understory shade-tolerant species (Palicourea padifolia (Roem. & Schult.) C.M. Taylor & Lorence and Psychotria elata (Swartz)) within two successional stages of a cloud forest in Costa Rica. Features of plant neighborhood physical structure and light availability, estimated by hemispherical photographs, were used to characterize the plant competition. Plant architecture, leaf attributes and gas exchange parameters extracted from the light-response curve were used as functional plant attributes, while an index of light capture efficiency (silhouette to total area ratio, averaged over all viewing angles, STAR) and carbon gain were used as indicators of plant performance. This framework is based in a partial least square Path model, which suggests that changes in plant performance in both species were affected in two ways: (i) increasing size and decreasing distance of neighbors cause changes in plant architecture (higher crown density and greater leaf dispersion), which contribute to lower STAR and subsequently lower carbon gain; and (ii) reductions in light availability caused by the neighbors also decrease plant carbon gain. The effect of neighbors on STAR and carbon gain were similar for the two forests sites, which were at different stages of succession, suggesting that the architectural changes of the two understory species reflect functional convergence in response to plant competition. Because STAR and carbon gain are variables that depend on multiple plant attributes and environmental characteristics, we suggest that changes in these features can be used as a whole-plant response approach to detect environmental filtering in highly diverse tropical forest communities.


Assuntos
Carbono/metabolismo , Luz , Árvores/efeitos dos fármacos , Árvores/efeitos da radiação
3.
New Phytol ; 207(1): 59-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711344

RESUMO

Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine.


Assuntos
Florestas , Geografia , Hidrologia , Folhas de Planta/fisiologia , Solo/química , Clima Tropical , Água/fisiologia , Gases/metabolismo , México , Pinus/fisiologia , Estômatos de Plantas/fisiologia , Quercus/fisiologia , Chuva , Estações do Ano , Especificidade da Espécie , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA