Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.139
Filtrar
1.
Semina cienc. biol. saude ; 45(2): 145-158, jul./dez. 2024. Ilus, Tab
Artigo em Português | LILACS | ID: biblio-1513096

RESUMO

As condições fitossanitárias de plantas arbóreas podem ser utilizadas para caracterizar comunidades vegetais, indicando condições de qualidade estrutural do componente vegetal. Assim, ambientes alterados antropicamente podem representar uma ameaça à fitossanidade. O objetivo deste estudo foi averiguar as características fitossanitárias do componente arbóreo em um trecho de 400 metros de extensão ao longo da linha férrea localizada no município de Três Barras, estado de Santa Catarina, Brasil. Foram registradas 33 espécies arbóreas, 29 gêneros e 19 famílias. Os índices ecológicos avaliados foram a abundância, densidade, riqueza e equabilidade. Foram avaliados 190 indivíduos em relação a qualidade da copa, grau de infestação de cipós e sanidade da árvore. Embora a qualidade da copa e a sanidade sejam majoritariamente boas, houve um relativo alto número de infestação de cipós. Tal ocorrência pode ser devido à condição de borda em que as plantas se encontram. Os bons índices ecológicos aliados ao baixo número de espécies arbóreas exóticas também indicam boas condições ecológicas e de fitossanidade local. Contudo, são necessários mais estudos (p. ex. florísticos e fitossociológicos) na área. A arborização urbana das proximidades aliada à formação de corredores ecológicos que liguem os fragmentos à Floresta Nacional de Três Barras pode ser uma medida de conservação e regeneração a ser explorada.


Phytosanitary conditions of tree plants can be used to characterize plant communities, indicating structural quality conditions of the plant component. Thus, anthropically altered environments may pose a threat to plant health. The objective of this study was to investigate the phytosanitary and ecological condition of the tree component in a stretch of 400 meters along the railway line located in the municipality of Três Barras, Santa Catarina state, Brazil. Thirty-three tree species were recorded, in addition to 54 taxonomically unidentified individuals. The ecological indices evaluated were abundance, density, richness and evenness. 190 individuals were evaluated in terms of crown quality, Abstract degree of liana infestation and tree health. Although canopy quality and health are mostly good, there was a relatively high number of vine infestations. Such an occurrence may be due to the edge condition in which the plants are located. The good ecological indices combined with the low number of exotic tree species also indicate good ecological conditions and local plant health. However, more studies are needed in the area. Urban afforestation, combined with the formation of ecological corridors that connect the fragments to the Três Barras National Forest, can be a conservation and regeneration measure to be explored.

2.
Front Plant Sci ; 15: 1373318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086911

RESUMO

Coffee Breeding programs have traditionally relied on observing plant characteristics over years, a slow and costly process. Genomic selection (GS) offers a DNA-based alternative for faster selection of superior cultivars. Stacking Ensemble Learning (SEL) combines multiple models for potentially even more accurate selection. This study explores SEL potential in coffee breeding, aiming to improve prediction accuracy for important traits [yield (YL), total number of the fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer)] in Coffea Arabica. We analyzed data from 195 individuals genotyped for 21,211 single-nucleotide polymorphism (SNP) markers. To comprehensively assess model performance, we employed a cross-validation (CV) scheme. Genomic Best Linear Unbiased Prediction (GBLUP), multivariate adaptive regression splines (MARS), Quantile Random Forest (QRF), and Random Forest (RF) served as base learners. For the meta-learner within the SEL framework, various options were explored, including Ridge Regression, RF, GBLUP, and Single Average. The SEL method was able to predict the predictive ability (PA) of important traits in Coffea Arabica. SEL presented higher PA compared with those obtained for all base learner methods. The gains in PA in relation to GBLUP were 87.44% (the ratio between the PA obtained from best Stacking model and the GBLUP), 37.83%, 199.82%, and 14.59% for YL, NF, LM and Cer, respectively. Overall, SEL presents a promising approach for GS. By combining predictions from multiple models, SEL can potentially enhance the PA of GS for complex traits.

3.
Forensic Sci Int Genet ; 68: 102971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39090851

RESUMO

Cannabis sativa can be classified in two main types, according to psychotropic cannabinoid ∆9-tetrahydrocannabinol (∆9-THC) content: the drug-type and the fiber-type. According to the European Monitoring Center for Drugs and Drug Addiction, most of the European Union countries consider the possession of cannabis, for personal use, a minor offense with possibility of incarceration. Despite of the model of legal supply (i.e., Spanish cannabis clubs, Netherlands coffee shops) or medical use (i.e., Italy), cannabis remains the most used and trafficked illicit plant in the European Union. Differentiating cannabis crops or tracing the biogeographical origin is crucial for law enforcement purposes. Chloroplast DNA (cpDNA) markers may assist to determine biogeographic origin and to differentiate hemp from marijuana. This research aims: to identify and to evaluate nine C. sativa cpDNA polymorphic SNP sites to differentiate crop type and to provide information about its biogeographical origin. Five SNaPshot™ assays for nine chloroplast markers were developed and conducted in marijuana samples seized in Chile, the USA-Mexico border and Spain, and hemp samples grown in Spain and in Italy. The SNapShot™ assays were tested on 122 cannabis samples, which included 16 blind samples, and were able to differentiate marijuana crop type from hemp crop type in all samples. Using phylogenetic analysis, genetic differences were observed between marijuana and hemp samples. Moreover, principal component analysis (PCA) supported the relationship among hemp samples, as well as for USA-Mexico border, Spanish, and Chilean marijuana samples. Genetic differences between groups based on the biogeographical origin and their crop type were observed. Increasing the number of genetic markers, including the most recently studied ones, and expanding the sample database will provide more accurate information about crop differentiation and biogeographical origin.


Assuntos
Cannabis , DNA de Cloroplastos , Polimorfismo de Nucleotídeo Único , Cannabis/genética , Marcadores Genéticos , DNA de Cloroplastos/genética , México , Reação em Cadeia da Polimerase , Europa (Continente) , Itália , Chile , Espanha
4.
Naturwissenschaften ; 111(5): 44, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136793

RESUMO

Galls are plant neoformations induced by specialized parasites. Since gall inducers rely on reactive plant sites for gall development, variations in abiotic factors that affect plant phenology are expected to impact the life cycle of gall inducers. To test the hypothesis that different light conditions affect both host plant and gall inducer life cycles, we studied the system Eugenia uniflora (Myrtaceae) - Clinodiplosis profusa (Cecidomyiidae), comparing plants occurring in sunny and shaded environments. We mapped phenological differences among individuals of E. uniflora occurring in the two environments and related them to the influence of luminosity on the life cycle of the gall inducer. Shade plants showed lower intensity of leaf sprouting throughout the year compared to sun-exposed plants, especially during the rainy season. Young and mature galls are synchronized with the peak of leaf sprouting at the beginning of the rainy season, lasting longer in sun-exposed plants - approximately two months longer compared to shade plants. The greater light intensity positively impacts the formation and growth of leaves and galls, with an extended period available for their induction and growth. Thus, light is an important factor for the development of gallers, considering that variations in luminosity influenced not only the phenology of the host plant, but also determined the life cycle of gall inducers. Furthermore, changes in plant-environment interactions are expected to affect the life cycle and richness of other host plant-gall inducer systems.


Assuntos
Eugenia , Luz Solar , Eugenia/fisiologia , Animais , Tumores de Planta/parasitologia , Luz , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Estações do Ano , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia
5.
Plant Physiol Biochem ; 215: 108979, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094483

RESUMO

Inoculation of Azospirillum in maize has become a standard practice in Latin America. However, information on the behavior and population survival of the Azospirillum post-inoculation is scarce, making standardization difficult and generating variations in inoculation efficiency across assays. In this study, we tracked the colonization of three agriculturally relevant Azospirillum strains (Ab-V5, Az39, and the ammonium excreting HM053) after different inoculation methods in maize crops by qPCR. Besides, we assessed their ability to promote maize growth by measuring biometric parameters after conducting a greenhouse essay over 42 days. Inoculated plants exhibited Azospirillum population ranging from 103 to 107 cells plant-1 throughout the experiment. While all strains efficiently colonized roots, only A. argentinense Az39 demonstrated bidirectional translocation between roots and shoots, which characterizes a systemic behavior. Optimal inoculation methods for plant growth promotion varied among strains: soil inoculation promoted the best maize growth for the Ab-V5 and Az39 strains, while seed inoculation proved most effective for HM053. The findings of this study demonstrate that the inoculation method affects the behavior of Azospirillum strains and their effectiveness in promoting maize growth, thereby guiding practices to enhance crop yield.


Assuntos
Azospirillum , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Azospirillum/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo
6.
Plant Sci ; 348: 112225, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142607

RESUMO

Nanotechnology has brought about significant progress through the use of goods based on nanomaterials. However, concerns remain about the accumulation of these materials in the environment and their potential toxicity to living organisms. Plants have the ability to take in nanomaterials (NMs), which can cause changes in their physiology and morphology. On the other hand, nanoparticles (NPs) have been used to increase plant development and control pests in agriculture by including them into agrochemicals. The challenges of the interaction, internalization, and accumulation of NMs within plant tissues are enormous, mainly because of the various characteristics of NMs and the absence of reliable analytical tools. As our knowledge of the interactions between NMs and plant cells expands, we are able to create novel NMs that are tailored, targeted, and designed to be safe, thus minimizing the environmental consequences of nanomaterials. This review provides a thorough examination and comparison of the main microscopy techniques, spectroscopic methods, and far-field super-resolution methodologies used to examine nanomaterials within the cell walls of plants.


Assuntos
Nanopartículas , Plantas , Nanopartículas/toxicidade , Plantas/metabolismo , Plantas/efeitos dos fármacos , Nanotecnologia/métodos
7.
Microbiome ; 12(1): 145, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107803

RESUMO

BACKGROUND: This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy ("pre-treatment strategy"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy ("post-treatment strategy"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (µ-CT). RESULTS: The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer. CONCLUSIONS: This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.


Assuntos
Biofilmes , Microbiota , Cárie Radicular , Saliva , Humanos , Cárie Radicular/microbiologia , Saliva/microbiologia , Bovinos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Dentina/microbiologia , Colagenases/metabolismo
8.
Front Plant Sci ; 15: 1393796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109054

RESUMO

The use of wild species as a source of genetic variability is a valued tool in the framework of crop breeding. Hordeum chilense Roem. et Schult is a wild barley species that can be a useful genetic donor for sustainable wheat breeding which carries genes conferring resistance to some diseases or increasing grain quality, among others. Septoria tritici blotch (STB), caused by the Zymoseptoria tritici fungus, is one of the most important wheat diseases worldwide, affecting both bread and durum wheat and having a high economic impact. Resistance to STB has been previously described in H. chilense chromosome 4Hch. In this study, we have developed introgression lines for H. chilense chromosome 4Hch in durum wheat using interspecific crosses, advanced backcrosses, and consecutive selfing strategies. Alien H. chilense chromosome segments have been reduced in size by genetic crosses between H. chilense disomic substitution lines in durum wheat and durum wheat lines carrying the Ph1 deletion. Hordeum chilense genetic introgressions were identified in the wheat background through several plant generations by fluorescence in situ hybridisation (FISH) and simple sequence repeat (SSR) markers. An STB infection analysis has also been developed to assess STB resistance to a specific H. chilense chromosome region. The development of these H. chilense introgression lines with moderate to high resistance to STB represents an important advance in the framework of durum breeding and can be a valuable tool for plant breeders.

9.
Heliyon ; 10(14): e34377, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39104509

RESUMO

The global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Bacillus strains influenced the rhizosphere bacterial community. The bacterial communities of the four different cultivars were dominated by Actinobacteria, Proteobacteria and Firmicutes. Nonmetric multidimensional scaling (NMDS) revealed that the rhizosphere bacterial communities of plants inoculated with Bacillus strains were more similar to each other than to the bacterial communities of uninoculated plants. This study highlights the contribution of these Bacillus strains to the promotion of sweet potato growth.

10.
Foods ; 13(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39123653

RESUMO

Three different fermented plant-based beverages were prepared and stored for a long period (50 days) to assess the effect of the quinoa-to-chickpea ratio on physicochemical stability and microbiological quality. Physicochemical stability was evaluated based on pH, acidity, Brix degrees, water-holding capacity (WHC), viscosity, and viscoelasticity. At the end of the long-term storage period, the pH, acidity, and WHC remained stable. During the entire storage period, the beverages maintained good bacterial, fungal, and lactic acid bacteria (LAB) counts. Quinoa and chickpea flour ratios of 50% showed a higher viscosity (18 Pa.s) and WHC (65%) during short-term storage (0-30 d), indicating that the presence of chickpea flour had a positive effect on these parameters, possibly because chickpea starch contains higher amounts of amylose and long-branch chain amylopectin, which impacts the retrogradation pattern under acidic and refrigerated conditions. However, at the end of storage (50 days), the same blend had a higher acidity, lower viscosity (0.78 Pa.s), and lower LAB counts (~1 × 108 CFU/mL), indicating that the increase in chickpea flour had an adverse long-term effect on these parameters. These results suggest that although different ratios of plant sources can improve the physical aspects, they need to be incorporated in a balanced manner to avoid negative effects on both short- and long-term storage, owing to the incorporation of different types of starches and proteins affecting the stability of the system.

11.
Plants (Basel) ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124194

RESUMO

Maize (Zea mays L.) is an essential commodity for global food security and the agricultural economy, particularly in regions such as San Martin, Peru. This study investigated the plant growth-promoting characteristics of native rhizobacteria isolated from maize crops in the San Martin region of Peru with the aim of identifying microorganisms with biotechnological potential. Soil and root samples were collected from maize plants in four productive zones in the region: Lamas, El Dorado, Picota, and Bellavista. The potential of twelve bacterial isolates was evaluated through traits, such as biological nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization, and siderophore production, and a completely randomized design was used for these assays. A completely randomized block design was employed to assess the effects of bacterial strains and nitrogen doses on maize seedlings. The B3, B5, and NSM3 strains, as well as maize seeds of the yellow hard 'Advanta 9139' variety, were used in this experiment. Two of these isolates, B5 and NSM3, exhibited outstanding characteristics as plant growth promoters; these strains were capable of nitrogen fixation, IAA production (35.65 and 26.94 µg mL-1, respectively), phosphate solubilization (233.91 and 193.31 µg mL-1, respectively), and siderophore production (34.05 and 89.19%, respectively). Furthermore, molecular sequencing identified the NSM3 isolate as belonging to Sporosarcina sp. NSM3 OP861656, while the B5 isolate was identified as Peribacillus sp. B5 OP861655. These strains show promising potential for future use as biofertilizers, which could promote more sustainable agricultural practices in the region.

12.
J Sci Food Agric ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132989

RESUMO

Raman spectroscopy, a fast, non-invasive, and label-free optical technique, has significantly advanced plant and food studies and precision agriculture by providing detailed molecular insights into biological tissues. Utilizing the Raman scattering effect generates unique spectral fingerprints that comprehensively analyze tissue composition, concentration, and molecular structure. These fingerprints are obtained without chemical additives or extensive sample preparation, making Raman spectroscopy particularly suitable for in-field applications. Technological enhancements such as surface-enhanced Raman scattering, Fourier-transform-Raman spectroscopy, and chemometrics have increased Raman spectroscopy sensitivity and precision. These and other advancements enable real-time monitoring of compound translocation within plants and improve the detection of chemical and biological contaminants, essential for food safety and crop optimization. Integrating Raman spectroscopy into agronomic practices is transformative and marks a shift toward more sustainable farming activities. It assesses crop quality - as well as the quality of the food that originated from crop production - early plant stress detection and supports targeted breeding programs. Advanced data processing techniques and machine learning integration efficiently handle complex spectral data, providing a dynamic and detailed view of food conditions and plant health under varying environmental and biological stresses. As global agriculture faces the dual challenges of increasing productivity and sustainability, Raman spectroscopy stands out as an indispensable tool, enhancing farming practices' precision, food safety, and environmental compatibility. This review is intended to select and briefly comment on outstanding literature to give researchers, students, and consultants a reference for works of literature in Raman spectroscopy mainly focused on plant, food, and agronomic sciences. © 2024 Society of Chemical Industry.

13.
Data Brief ; 55: 110644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100783

RESUMO

It is expected that CO2 concentration will increase in the air, thereby stimulating the photosynthesis process and, hence, plant biomass production. In the case of legumes, increased biomass due to higher CO2 concentration can stimulate atmospheric nitrogen (N2) fixation in the nodules. However, N2 fixation is inhibited by external N supply. Thus, biomass production and N2 fixation were analysed in two legumes (Pisum sativum L. and Vicia faba L.) grown at two levels of CO2 and three N levels. P. sativum reduces fixation with high soil N (facultative), while V. faba maintains high fixation regardless of soil N levels (obligate). The N2 fixation and plant and nodule biomass of the two species were evaluated in a pot experiment under controlled conditions using growth chambers with artificial CO2 supply and N addition. The proportion of N derived from the air (%Ndfa) present in the plants' biomass was calculated from the natural abundance of 15N and the N concentration of plant tissues using nonlegumes reference plants. Additionally, N content data are presented for both species growing at two levels of air CO2. The data may be useful for plant physiologists, especially those working on biological N2 fixation with non-model legumes at elevated CO2.

14.
Food Res Int ; 192: 114807, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147471

RESUMO

Alternative protein sources have been required to meet the significant plant protein demand. Agro-industrial by-products such as leaves have considerable potential as a source of macromolecules once they are mostly discarded as waste. The current study evaluated dried cassava leaves as a protein source. First, alkaline extraction parameters (solid-liquid ratio, pH, and temperature) were optimized and the run that result in the highest protein yield were acidified at pH 2.5 or 4. The influence of carbohydrate solubilized on protein precipitation was also evaluated by removing it via alcoholic extraction prior to precipitation. The experimental design showed that high pH and temperature conditions associated with a low solid-liquid ratio led to increased protein yields. The presence of carbohydrates in the supernatant significantly influenced protein precipitation. The protein concentrate had around 17.51% protein when it was obtained from a supernatant with carbohydrates, while protein content increased to 26.88% when it was obtained from carbohydrate-free supernatant. The precipitation pH also influenced protein content, whereas protein content significantly decreased when pH increased from 2.5 to 4. The natural interaction between carbohydrates and proteins from cassava leaves positively influenced the emulsion stability index and the foaming capacity and stability. Thus, the presented results bring insights into challenges in extracting and precipitation proteins from agro-industrial by-products.


Assuntos
Precipitação Química , Manihot , Folhas de Planta , Proteínas de Plantas , Temperatura , Manihot/química , Folhas de Planta/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Emulsões/química
15.
Food Res Int ; 192: 114849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147528

RESUMO

Following consumer trends and market needs, the food industry has expanded the use of unconventional sources to obtain proteins. In parallel, 3D and 4D food printing have emerged with the potential to enhance food processing. While 3D and 4D printing technologies show promising prospects for improving the performance and applicability of unconventional sourced proteins (USP) in food, this combination remains relatively unexplored. This review aims to provide an overview of the application of USP in 3D and 4D printing, focusing on their primary sources, composition, rheological, and technical-functional properties. The drawbacks, challenges, potentialities, and prospects of these technologies in food processing are also examined. This review underscores the current necessity for greater regulation of food products processed by 3D and 4D printing. The data presented here indicate that 3D and 4D printing represent viable, sustainable, and innovative alternatives for the food industry, emphasizing the potential for further exploration of 4D printing in food processing. Additional studies are warranted to explore their application with unconventional proteins.


Assuntos
Manipulação de Alimentos , Impressão Tridimensional , Manipulação de Alimentos/métodos , Reologia , Proteínas , Indústria Alimentícia
16.
Food Sci Biotechnol ; 33(11): 2461-2475, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144188

RESUMO

Healthy and sustainable diets have seen a surge in popularity in recent years, driven by a desire to consume foods that not only help health but also have a favorable influence on the environment, such as plant-based proteins. This has created controversy because plant-based proteins may not always contain all the amino acids required by the organism. However, protein extraction methods have been developed due to technological advancements to boost their nutritional worth. Furthermore, certain chemicals, such as bioactive peptides, have been identified and linked to favorable health effects. As a result, the current analysis focuses on the primary plant-based protein sources, their chemical composition, and the molecular mechanism activated by the amino acid types of present. It also discusses plant protein extraction techniques, bioactive substances derived from these sources, product development using plant protein, and the therapeutic benefits of these plant-based proteins in clinical research.

17.
Vet Parasitol ; 331: 110281, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111197

RESUMO

Rhipicephalus microplus is among the most important ectoparasites for livestock. The use of synthetic acaricides has raised some concerns due to the selection of tick populations that are resistant to acaricides and environmental contamination. Therefore, plant extracts have been used as alternatives for the treatment of animals infested with ticks. In this study, R. microplus populations from seven different dairy farms were collected and assessed for their resistance to the acaricides cypermethrin or trichlorfon. Larvae of the most resistant population were used in assays to evaluate the acaricide effect of leaf extracts from plants of the Brazilian savanna. The most active extracts were also tested against fully engorged females. Among seven tick populations, five and three showed resistance level ≥ III for cypermethrin or trichlorfon, respectively. The most resistant tick population was evaluated in mortality assays with the plants Piptadenia viridiflora, Annona crassiflora, Caryocar brasiliense, Ximenia americana, and Schinopsis brasilienses. The ethanolic extracts of C. brasiliense, X. americana and S. brasilienses showed higher larvicidal effects in comparison to the other extracts and cypermethrin. The ethanolic extract of X. americana showed 60.79 % efficacy against fully engorged females of the acaricide resistant tick strain. The ethanolic extracts of C. brasiliense, X. americana, and S. brasilienses showed peaks in HPLC-DAD, indicating the presence of tannins and flavonoids. Three of the plants showed promising results and should be explored in further studies to develop novel tools to control R. microplus in cattle.


Assuntos
Acaricidas , Extratos Vegetais , Piretrinas , Rhipicephalus , Triclorfon , Animais , Rhipicephalus/efeitos dos fármacos , Piretrinas/farmacologia , Acaricidas/farmacologia , Brasil , Feminino , Extratos Vegetais/farmacologia , Triclorfon/farmacologia , Larva/efeitos dos fármacos , Pradaria , Bovinos , Resistência a Medicamentos , Folhas de Planta/química , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/tratamento farmacológico
18.
Inflammopharmacology ; 32(5): 3499-3519, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126568

RESUMO

Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.


Assuntos
Antiulcerosos , Antioxidantes , Flavonoides , Extratos Vegetais , Plantas Medicinais , Ratos Wistar , Úlcera Gástrica , Animais , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Ratos , Extratos Vegetais/farmacologia , Masculino , Antiulcerosos/farmacologia , Antiulcerosos/isolamento & purificação , Plantas Medicinais/química , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , Fabaceae/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Simulação de Acoplamento Molecular
19.
J Ethnobiol Ethnomed ; 20(1): 69, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049116

RESUMO

BACKGROUND: Historically, the Andean people have experienced uncertainty in terms of the availability of food resources because of climatic and ecological variations that are typical of mountainous environments. Risk management strategies, including the diversified and complementary use and management of species and ecosystems at different elevations, have faced such uncertainty. The current effects of climate change on food security motivate studies on subsistence adaptative strategies. TEK offers extraordinary experience and local biocultural memory to meet present and future needs. From an ethnoecological perspective, we aim to identify the variety of local foods in Andean communities, their cultural and nutritional value for local people, their use frequencies, and their forms to obtain them from different environments, productive systems, and interchanges. We expected to identify traditional Andean diversified subsistence patterns despite the pressure of modern food and interchange systems. METHODS: This study was conducted in two communities in the highlands of the Department of Huánuco, Peru. We conducted 24 semistructured interviews with households sampled through the snowball method. We asked about their daily life food, plant and animal components of diet, frequencies and seasons in which they are consumed, and ways to obtain them. We complemented the information through ethnobotanical collection of wild, weedy, and ruderal edible plants and records on domestic and wild animals included in the diet. RESULTS: We recorded 37 crop species, 13 domestic animals, 151 wild, weedy, and ruderal food plant species, the 3 most commonly consumed wild animals, and 52 processed products obtained from local stores and markets. The main crops are potato and maize, while the main domestic animals included in the diet are cattle, pigs, and sheep. Rice, pasta, and bread are the main raw and processed foods included in the diet. Crops represent nearly half of the food consumed and purchased (in kg/year), and tubers and cereals provide most of the kilocalories, carbohydrates and proteins. Wild, weedy, and ruderal plants are consumed in relatively low amounts and at relatively low frequencies per species, but overall, they constitute a significant proportion of the kg of annually consumed food (14.4% in Cani and 9.6% in Monte Azul). Knowledge and use of these resources play a key role in local cuisine and nutrition. CONCLUSION: The current food patterns studied are based on diverse diets, including multiple feedstuffs, sources, and practices to obtain them, which reflects the traditional Andean subsistence pattern. The increasing adoption of processed food has influenced the declining consumption of local food, mainly among young people. Communication and policies to promote local food, emphasizing the role of wild plants and their adequate consumption, and provide information on their nutritional value are recommended to support efforts toward food sovereignty and conservation of Andean biocultural diversity.


Assuntos
Agricultura , Peru , Humanos , Animais , Etnobotânica , Masculino , Dieta , Feminino , Adulto , Pessoa de Meia-Idade , Ração Animal , Padrões Dietéticos
20.
Gels ; 10(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057490

RESUMO

The present study aimed to investigate the properties of calcium-rich soy protein isolate (SPI) gels (14% SPI; 100 mM CaCl2), the effects of incorporating different concentrations locust bean gum (LBG) (0.1-0.3%, w/v) to the systems and the stability of the obtained gels. Also, the incorporation of solid lipid microparticles (SLMs) was tested as an alternative strategy to improve the system's stability and, therefore, potential to be applied as a product prototype. The gels were evaluated regarding their visual aspect, rheological properties, water-holding capacities (WHCs) and microstructural organizations. The CaCl2-induced gels were self-supported but presented low WHC (40.0% ± 2.2) which was improved by LBG incorporation. The obtained mixed system, however, presented low stability, with high syneresis after 10 days of storage, due to microstructural compaction. The gels' stability was improved by SLM incorporation, which decreased the gelled matrices' compaction and syneresis for more than 20 days. Even though the rheological properties of the emulsion-filled gels (EFGs) were very altered due to the ageing process (which may affect the sensory perception of a future food originated from this EFG), the incorporation of SLMs increased the systems potential to be applied as a calcium-rich product prototype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA