RESUMO
AIMS: The American leaf spot, caused by Mycena citricolor, is an important disease of coffee (Coffea arabica), mostly in Central America. Currently, there are limited pathogen control alternatives that are environment friendly and economically accessible. The use of fungi isolated from the plant endomycobiota in their native habitats is on the rise because studies show their great potential for biological control. To begin to generate a green alternative to control M. citricolor, the objectives of the present study were to (i) collect, identify, screen (in vitro and in planta), and select endophytic fungi from wild Rubiaceae collected in old-growth forests of Costa Rica; (ii) confirm endophytic colonization in coffee plantlets; (iii) evaluate the effects of the endophytes on plantlet development; and (iv) corroborate the antagonistic ability in planta. METHODS AND RESULTS: Through in vitro and in planta antagonism assays, we found that out of the selected isolates (i.e. Daldinia eschscholzii GU11N, Nectria pseudotrichia GUHN1, Purpureocillium aff. lilacinum CT24, Sarocladium aff. kiliense CT25, Trichoderma rifaii CT5, T. aff. crassum G1C, T. aff. atroviride G7T, T. aff. strigosellum GU12, and Xylaria multiplex GU14T), Trichoderma spp. produced the highest growth inhibition percentages in vitro. Trichoderma isolates CT5 and G1C were then tested in planta using Coffea arabica cv. caturra plantlets. Endophytic colonization was verified, followed by in planta growth promotion and antagonism assays. CONCLUSIONS: Results show that Trichoderma isolates CT5 and G1C have potential for plant growth promotion and antagonism against Mycena citricolor, reducing incidence and severity, and preventing plant mortality.
Assuntos
Agaricales , Coffea , Rubiaceae , Café , Fungos , Coffea/microbiologiaRESUMO
The study of complex ecological interactions, such as those among host, pathogen, and vector communities, can help to explain host ranges and the emergence of novel pathogens. We evaluated the viromes of papaya orchards, including weed and insect viromes, to identify common viruses in intensive production of papaya in the Pacific Coastal Plain and the Central Depression of Chiapas, Mexico. Samples of papaya cultivar Maradol, susceptible to papaya ringspot virus (PRSV), were categorized by symptoms by local farmers (papaya ringspot symptoms, non-PRSV symptoms, or asymptomatic). These analyses revealed the presence of 61 viruses, where only 4 species were shared among both regions, 16 showed homology to known viruses, and 36 were homologous with genera including Potyvirus, Comovirus, and Tombusvirus (RNA viruses) and Begomovirus and Mastrevirus (DNA viruses). We analyzed the network of associations between viruses and host-location combinations, revealing ecological properties of the network, such as an asymmetric nested pattern, and compared the observed network to null models of network association. Understanding the network structure informs management strategies, for example, revealing the potential role of PRSV in asymptomatic papaya and that weeds may be an important pathogen reservoir. We identify three key management implications: (i) each region may need a customized management strategy; (ii) visual assessment of papaya may be insufficient for PRSV, requiring diagnostic assays; and (iii) weed control within orchards may reduce the risk of virus spread to papaya. Network analysis advances understanding of host-pathogen interactions in the agroecological landscape.IMPORTANCE Virus-virus interactions in plants can modify host symptoms. As a result, disease management strategies may be unsuccessful if they are based solely on visual assessment and diagnostic assays for known individual viruses. Papaya ringspot virus is an important limiting factor for papaya production and likely has interactions with other viruses that are not yet known. Using high-throughput sequencing, we recovered known and novel RNA and DNA viruses from papaya orchards in Chiapas, Mexico, and categorized them by host and, in the case of papaya, symptom type: asymptomatic papaya, papaya with ringspot virus symptoms, papaya with nonringspot symptoms, weeds, and insects. Using network analysis, we demonstrated virus associations within and among host types and described the ecological community patterns. Recovery of viruses from weeds and asymptomatic papaya suggests the need for additional management attention. These analyses contribute to the understanding of the community structure of viruses in the agroecological landscape.
RESUMO
Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and time that enables and promotes primary conidia production and capilliconidia formation in N. floridana (Brazilian isolate ESALQ 1420), in both a detached leaf assay mimicking climatic conditions in the leaf boundary layer and in a semi-field experiment. In the detached leaf assay, a significant number of conidia were produced at 90% RH but the highest total number of primary conidia and proportion of capilliconidia was found at 95 and 100% RH at 25 °C. Positive temperature and RH effects were observed and conidia production was highest in the 8 to 12 h interval. The semi-field experiment showed that for a >90% probability of N. floridana sporulation, a minimum of 6 h with RH >90% and 10 h with temperatures >21 °C, or 6 h with temperatures >21 °C and 15 h with RH >90% was needed. Our study identified suitable conditions for primary- and capilliconidia production in this Brazilian N. floridana isolate. This information provides an important base for building models of a Decision Support System (DSS) where this natural enemy may be used as a tool in Integrated Pest Management (IPM) and a base for developing in vivo production systems of N. floridana.
RESUMO
The aim of this study was to evaluate the natural occurrence of Beauveria spp. in soil, from infections in the stink bug Piezodorus guildinii, an important pest of common bean (Phaseolus vulgaris) and as endophytes in bean plant tissue. Twelve conventional and 12 organic common bean fields in the Villa Clara province, Cuba were sampled from September 2014 to April 2015. One hundred and fifty Beauveria isolates were obtained from soil samples, bean plant parts and stink bugs. The overall frequency of occurrence of Beauveria isolates in conventional fields (8.4%) was significantly lower than that in organic fields (23.6%). Beauveria were also obtained significantly more frequently from bean roots in organic fields (15.0%) compared to bean roots in conventional fields (3.3%). DNA sequencing of the intergenic Bloc region was performed for Beauveria species identification. All isolates where characterized as Beauveria bassiana (Balsamo-Crivelli) Vuillemin, and clustered with isolates of neotropical origin previously described as AFNEO_1. The Cuban B. bassiana isolates formed five clusters in the phylogeny. Isolates of two clusters originated from all four locations, organic and conventional fields, as well as soil, plants and stink bugs. Organic fields contained isolates of all five clusters while conventional fields only harbored isolates of the two most frequent ones. Mating type PCR assays revealed that mating type distribution was skewed, with MAT1/MAT2 proportion of 146/4, indicating limited potential for recombination. The present study is the first to report of B. bassiana as a naturally occurring endophyte in common bean. Further, it shows that B. bassiana occurs naturally in diverse environments of common bean fields, and constitutes a potential reservoir of natural enemies against pest insects particularly in organic fields.