Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 14: 1227268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936684

RESUMO

Introduction: The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods: Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion: C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions: These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Neuroblastoma , Humanos , Camundongos , Animais , Ficocianina/efeitos adversos , Nociceptividade , Proteoma , Infiltração de Neutrófilos , Camundongos Endogâmicos C57BL , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Expressão Gênica , Citocinas/farmacologia , Dor
2.
Front Immunol ; 13: 1036200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405721

RESUMO

Cytokines, demyelination and neuroaxonal degeneration in the central nervous system are pivotal elements implicated in the pathogenesis of multiple sclerosis (MS) and its nonclinical model of experimental autoimmune encephalomyelitis (EAE). Phycocyanobilin (PCB), a chromophore of the biliprotein C-Phycocyanin (C-PC) from Spirulina platensis, has antioxidant, immunoregulatory and anti-inflammatory effects in this disease, and it could complement the effect of other Disease Modifying Treatments (DMT), such as Interferon-ß (IFN-ß). Here, our main goal was to evaluate the potential PCB benefits and its mechanisms of action to counteract the chronic EAE in mice. MOG35-55-induced EAE was implemented in C57BL/6 female mice. Clinical signs, pro-inflammatory cytokines levels by ELISA, qPCR in the brain and immunohistochemistry using precursor/mature oligodendrocytes cells antibodies in the spinal cord, were assessed. PCB enhanced the neurological condition, and waned the brain concentrations of IL-17A and IL-6, pro-inflammatory cytokines, in a dose-dependent manner. A down- or up-regulating activity of PCB at 1 mg/kg was identified in the brain on three (LINGO1, NOTCH1, and TNF-α), and five genes (MAL, CXCL12, MOG, OLIG1, and NKX2-2), respectively. Interestingly, a reduction of demyelination, active microglia/macrophages density, and axonal damage was detected along with an increase in oligodendrocyte precursor cells and mature oligodendrocytes, when assessed the spinal cords of EAE mice that took up PCB. The studies in vitro in rodent encephalitogenic T cells and in vivo in the EAE mouse model with the PCB/IFN-ß combination, showed an enhanced positive effect of this combined therapy. Overall, these results demonstrate the anti-inflammatory activity and the protective properties of PCB on the myelin and support its use with IFN-ß as an improved DMT combination for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Feminino , Animais , Camundongos , Ficocianina/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/efeitos adversos , Modelos Animais de Doenças , Citocinas/uso terapêutico , Interferon beta/uso terapêutico
3.
Heliyon ; 8(6): e09769, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800718

RESUMO

Background: Oxidative stress has a predominant role in the pathogenesis of neurodegenerative diseases and therefore the modulation of genes and the identification of biological pathways associated with antioxidant therapies, have an impact on its treatment. Objective: The objective of this study was the comparison of 2 methods for the analysis of real-time PCR (qPCR) data, through the use of the evaluation of genes that mediate the effect of Phycocyanobilin (PCB) and its validation in animal models. Methods: We evaluated the effect of PCB:" in vitro" on gene modulation through qPCR analyzed by parametric ANOVA and multivariate principal component analysis (PCA) in a model of glutamate-induced excitotoxicity in the SH-SY5Y cell line and" in vivo"; in animal models of multiple sclerosis (MS) and cerebral ischemia (CI). Results: The results showed that PCA is a robust and powerful method that allows the assessment of gene expression profiles. We detected the significant down-regulation of the CYBB (NOX2), and HMOX1 by the action of PCB in SH-5YSH cell line insulted with Glutamate. The decrease in pro-inflammatory cytokines and markers related to apoptosis and innate immune response, mediated the effect of PCB in the animal models of MS and CI, respectively. Conclusion: We concluded that the mechanisms by which PCB protected cells included the reduction of oxidative stress damage, which could contribute to its clinical efficacy for the treatment of neurodegenerative diseases.

4.
Curr Neuropharmacol ; 19(12): 2250-2275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829974

RESUMO

The edible cyanobacterium Spirulina platensis and its chief biliprotein C-Phycocyanin have shown protective activity in animal models of diverse human health diseases, often reflecting antioxidant and anti-inflammatory effects. The beneficial effects of C-Phycocyanin seem likely to be primarily attributable to its covalently attached chromophore Phycocyanobilin (PCB). Within cells, biliverdin is generated from free heme and it is subsequently reduced to bilirubin. Although bilirubin can function as an oxidant scavenger, its potent antioxidant activity reflects its ability to inactivate some isoforms of NADPH oxidase. Free bilirubin can also function as an agonist for the aryl hydrocarbon receptor (AhR); this may explain its ability to promote protective Treg activity in cellular and rodent models of inflammatory disease. AhR agonists also promote transcription of the gene coding for Nrf-2, and hence can up-regulate phase 2 induction of antioxidant enzymes, such as HO-1. Hence, it is proposed that C-Phycocyanin/PCB chiefly exert their protective effects via inhibition of NADPH oxidase activity, as well as by AhR agonism that both induces Treg activity and up-regulates phase 2 induction. This simple model may explain their potent antioxidant/antiinflammatory effects. Additionally, PCB might mimic biliverdin in activating anti-inflammatory signaling mediated by biliverdin reductase. This essay reviews recent research in which CPhycocyanin and/or PCB, administered orally, parenterally, or intranasally, have achieved marked protective effects in rodent and cell culture models of Ischemic Stroke and Multiple Sclerosis, and suggests that these agents may likewise be protective for Alzheimer's disease, Parkinson's disease, and in COVID-19 and its neurological complications.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Animais , Suplementos Nutricionais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ficobilinas , Ficocianina/farmacologia , SARS-CoV-2
5.
Clin Exp Pharmacol Physiol ; 47(3): 383-392, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732975

RESUMO

Pharmacological therapies for interrupting biochemical events of the ischaemic cascade and protecting against stroke in humans are as yet unavailable. Up to now, the neuroprotective activity in cerebral ischaemia of phycocyanobilin (PCB), a tetrapyrrolic natural antioxidant, has not been fully examined. Here, we evaluated if PCB protects PC12 neuronal cells against oxygen and glucose deprivation plus reperfusion, and its protective effects in a rat model of endothelin-1-induced focal brain ischaemia. PCB was purified from the cyanobacteria Spirulina platensis and characterized by spectrophotometric, liquid and gas chromatography and mass spectrometry techniques. In Wistar rats, PCB at 50, 100 and 200 µg/kg or phosphate-buffered saline (vehicle) was administered intraperitoneally at equal subdoses in a therapeutic schedule (30 minutes, 1, 3 and 6 hours after the surgery). Brain expression of myelin basic protein (MBP) and the enzyme CNPase was determined by immunoelectron microscopy. PCB was obtained with high purity (>95%) and the absence of solvent contaminants and was able to ameliorate PC12 cell ischaemic injury. PCB treatment significantly decreased brain infarct volume, limited the exploratory behaviour impairment and preserved viable cortical neurons in ischaemic rats in a dose-dependent manner, compared to the vehicle group. Furthermore, PCB at high doses restored the MBP and CNPase expression levels in ischaemic rats. An improved PCB purification method from its natural source is reported, obtaining PCB that is suitable for pharmacological trials showing neuroprotective effects against experimental ischaemic stroke. Therefore, PCB could be a therapeutic pharmacological alternative for ischaemic stroke patients.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Endotelina-1/toxicidade , Ficobilinas/uso terapêutico , Ficocianina/uso terapêutico , Animais , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Masculino , Células PC12 , Ratos , Ratos Wistar
6.
Behav Sci (Basel) ; 8(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346320

RESUMO

Myelin loss has a crucial impact on behavior disabilities associated to Multiple Sclerosis (MS) and Ischemic Stroke (IS). Although several MS therapies are approved, none of them promote remyelination in patients, limiting their ability for chronic recovery. With no available therapeutic options, enhanced demyelination in stroke survivors is correlated with a poorer behavioral recovery. Here, we show the experimental findings of our group and others supporting the remyelinating effects of C-Phycocyanin (C-PC), the main biliprotein of Spirulina platensis and its linked tetrapyrrole Phycocyanobilin (PCB), in models of these illnesses. C-PC promoted white matter regeneration in rats and mice affected by experimental autoimmune encephalomyelitis. Electron microscopy analysis in cerebral cortex from ischemic rats revealed a potent remyelinating action of PCB treatment after stroke. Among others biological processes, we discussed the role of regulatory T cell induction, the control of oxidative stress and pro-inflammatory mediators, gene expression modulation and COX-2 inhibition as potential mechanisms involved in the C-PC and PCB effects on the recruitment, differentiation and maturation of oligodendrocyte precursor cells in demyelinated lesions. The assembled evidence supports the implementation of clinical trials to demonstrate the recovery effects of C-PC and PCB in these diseases.

7.
Life Sci ; 194: 130-138, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287781

RESUMO

The only three oral treatments currently available for multiple sclerosis (MS) target the relapsing forms of the disease and concerns regarding efficacy, safety and tolerability limit their use. Identifying novel oral disease-modifying therapies for MS, targeting both its inflammatory and neurodegenerative components is still a major goal. AIM: The scope of this study was to provide evidence that the oral administration of C-Phycocyanin (C-PC), the main biliprotein of the Spirulina platensis cyanobacteria and its tetrapyrrolic prosthetic group, Phycocyanobilin (PCB), exert ameliorating actions on rodent models of experimental autoimmune encephalomyelitis (EAE). MAIN METHODS: EAE was induced in Lewis rats using the spinal cord encephalitogen from Sprague Dawley rats and in C57BL6 mice with MOG35-55 peptide. Clinical signs, motor function, oxidative stress markers, cytokine levels by ELISA and transmission electron microscopy analysis were assessed. KEY FINDINGS: Either prophylactic or early therapeutic administration of C-PC to Lewis rats with EAE, significantly improved clinical signs and restored the motor function of the animals. Furthermore, C-PC positively modulated oxidative stress markers measured in brain homogenate and serum and protected the integrity of cerebral myelin sheaths as shown by transmission electron microscopy analysis. In C57BL/6 mice with EAE, PCB orally improved clinical status of the animals and reduced the expression levels of brain IL-6 and IFN-γ proinflammatory cytokines. SIGNIFICANCE: These results, for the first time, support the fact that both C-PC and PCB administered orally could potentially improve neuroinflammation, protect from demyelination and axonal loss, which may be translated into an improved quality of life for MS patients.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Ficobilinas/uso terapêutico , Ficocianina/uso terapêutico , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Encéfalo/patologia , Citocinas/análise , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Interleucina-6/análise , Masculino , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Ficobilinas/administração & dosagem , Ficobilinas/química , Ficocianina/administração & dosagem , Ficocianina/química , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Spirulina/química
8.
Rev. cuba. hematol. inmunol. hemoter ; 32(4): 447-454, oct.-dic. 2016.
Artigo em Espanhol | LILACS | ID: biblio-844896

RESUMO

Las ficobiliproteínas son proteínas solubles en agua, que funcionan como pigmentos fotosintéticos accesorios en diferentes organismos tales como las cianobacterias, las algas rojas y las criptomonadas. En el alga verdeazul Spirulina platensis, una de las ficobiliproteínas más abundantes es la C-ficocianina, la cual tiene unido tres cromóforos ficocianobilina mediante un enlace tioéter a cisteínas específicas. La ficocianobilina es un tetrapirrol lineal asociado a la captación de energía solar en estos organismos. La C-ficocianina ha sido empleada en diferentes investigaciones biomédicas como biomarcador, por sus propiedades fluorescentes, y como posible agente terapéutico para el tratamiento de enfermedades asociadas al estrés oxidativo, por sus propiedades antioxidantes, inmunomoduladoras y antinflamatorias. Se ha demostrado que esta proteína aumenta la liberación de interferón gamma en células mononucleares de sangre periférica y modula la producción de citocinas inflamatorias como el factor de necrosis tumoral alfa, entre otras. Además, se ha encontrado que la C-ficocianina tiene efecto inmunomodulador de citocinas que potencian la activación de las células del sistema inmune, como la IL-6 y la IL-1ß, así como la regulación de aproximadamente 190 genes implicados en la inmunidad(AU)


Phycobiliproteins are water-soluble proteins that function as accessory photosynthetic pigments in different organisms such as cyanobacteria, red algae and cryptomonads. In the blue-green algae Spirulina platensis one of the most abundant phycobiliproteins is the C-phycocyanin, which has three phycocyanobilin chromophores linked through a thioether bond to specific cysteine. The phycocyanobilin is a linear tetrapyrrole associated with solar energy absorption in these organisms. The C-phycocyanin has been used in several biomedical researches as a biomarker, for their fluorescence properties, and as a possible therapeutic agent for the treatment of diseases associated with oxidative stress for its antioxidant, anti-inflammatory and immunomodulatory properties. It has been shown that this protein increases the release of interferon gamma in peripheral blood mononuclear cells, and modulates the production of inflammatory cytokines such as tumor necrosis factor among others. Furthermore it has been found that the C-phycocyanin has immunomodulatory effect on cytokines that enhance the activation of immune cells, such as IL-6 and IL-1ß, and the regulation of about 190 genes involved in immunity(AU)


Assuntos
Ficobiliproteínas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Ficocianina/uso terapêutico
9.
Toxicol Appl Pharmacol ; 272(1): 49-60, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23732081

RESUMO

Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Genes MHC da Classe II/efeitos dos fármacos , Inflamação/genética , Estresse Oxidativo/efeitos dos fármacos , Ficobilinas/farmacologia , Ficocianina/farmacologia , Animais , Biomarcadores/metabolismo , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Transtornos Cerebrovasculares/fisiopatologia , Corantes , Citocinas/biossíntese , Ácido Glutâmico/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Análise em Microsséries , Oxirredução , Células PC12 , Ficobilinas/isolamento & purificação , Ficocianina/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Spirulina/química , Sais de Tetrazólio , Tiazóis , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA