Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(22)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38408380

RESUMO

Tuning the band gap is of utmost importance for the practicality of two-dimensional materials in the semiconductor industry. In this study, we investigate the ballistic transport and the tunneling magnetoresistance (TMR) properties within a modulated gap in a ferromagnetic/normal/ferromagnetic (F/N/F) phosphorene junction. The theoretical framework is established on a Dirac-like Hamiltonian, the transfer matrix method, and the Landauer-Büttiker formalism to characterize electron behavior and obtain transmittance, conductance and TMR. Our results reveal that a reduction in gap energy leads to an enhancement of conductance for both parallel and anti-parallel magnetization configurations. In contrast, a significant reduction and redshift in TMR have been observed. Notably, the application of an electrostatic field in a gapless phosphorene F/N/F junction induces a blueshift and a slight increase in TMR. Furthermore, we found that introducing an asymmetrically applied electrostatic field in this gapless junction results in a significant reduction and redshift in TMR. Additionally, intensifying the applied magnetic field leads to a substantial increase in TMR. These findings could be useful for designing and implementing practical applications that require precise control over the TMR properties of a phosphorene F/N/F junction with a modulated gap.

2.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972607

RESUMO

Periodic superlattices constitute ideal structures to modulate the transport properties of two-dimensional materials. In this paper, we show that the tunneling magnetoresistance (TMR) in phosphorene can be tuned effectively through periodic magnetic modulation. Deltaic magnetic barriers are arranged periodically along the phosphorene armchair direction in parallel (PM) and anti-parallel magnetization (AM) fashion. The theoretical treatment is based on a low-energy effective Hamiltonian, the transfer matrix method and the Landauer-Büttiker formalism. We find that the periodic modulation gives rise to oscillating transport characteristics for both PM and AM configurations. More importantly, by adjusting the electrostatic potential appropriately we find Fermi energy regions for which the AM conductance is reduced significantly while the PM conductance keeps considerable values, resulting in an effective TMR that increases with the magnetic field strength. These findings could be useful in the design of magnetoresistive devices based on magnetic phosphorene superlattices.

3.
J Mol Model ; 27(12): 349, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750682

RESUMO

Black and blue phosphorene (2D-dimensional allotropes of phosphorus) have shown fascinating electronic, optical, and magnetic properties, with promising technological applications. In this work, we studied the adsorption of amine, hydroxyl, amide, and carboxyl groups onto both black and blue phosphorenes, in order to analyse the effects of biomolecule anchoring on the structural and electronic properties of phosphenes, using density functional simulations. Analyses were carried out of six different configurations for each chemical group functionalised on black and blue phosphorene. We observed that the radicals interacted via a chemisorption regime with the nanostructures, with binding energies that varied from 1.42 to 3.78 eV. The electronic properties showed that the presence of the chemical groups altered the energy gaps for both black and blue phosphorenes, due to a presence of a half-filled level when a single radical was adsorbed. We were able to observe that functionalised two-dimensional phosphorene showed promising characteristics in terms of anchoring molecules, and particularly those of biological interest, due to its high surface area, strong coupling between phosphorene and chemical groups, and the possibility of chemically manipulating radicals.


Assuntos
Modelos Químicos , Fósforo/química , Adsorção , Amidas/química , Aminas/química , Teoria da Densidade Funcional , Nanoestruturas/química
4.
J Phys Condens Matter ; 34(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34736227

RESUMO

The application of strain to 2D materials allows manipulating the electronic, magnetic, and thermoelectric properties. These physical properties are sensitive to slight variations induced by tensile and compressive strain and the uniaxial strain direction. Herein, we take advantage of the reversible semiconductor-metal transition observed in certain monolayers to propose a hetero-bilayer device. We propose to pill up phosphorene (layered black phosphorus) and carbon monosulfide monolayers. In the first, such transition appears for positive strain, while the second appears for negative strain. Our first-principle calculations show that depending on the direction of the applied uniaxial strain; it is possible to achieve reversible control in the layer that behaves as an electronic conductor while the other layer remains as a thermal conductor. The described strain-controlled selectivity could be used in the design of novel devices.

5.
J Phys Condens Matter ; 33(45)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34375965

RESUMO

A systematic study of the adsorption of several harmful gases (CO2, NO, SO2, NH3y H2S) onto black phosphorene and three different black phosphorene oxides (BPO) is carried out through density functional theory calculations. In general, it is shown that BPOs are more suitable adsorbents than pure black phosphorene. Smaller values of adsorption energy correspond to CO2molecules, whilst those exhibiting larger ones are NH3, H2S, NO y SO2. It is found that SO2shows the greater difference in electronic charge transfer as well as the longer time of recovery among all species, being an electron acceptor molecule. Besides, it is revealed that physisorption induces changes of different order in the electronic, magnetic and optical responses of phosphorene systems involved. Greater changes in the electronic structure are produced in the case of NO adsorption. In that case, semiconductor nature and magnetization features of black phosphorene band structure become significantly modified. Moreover, a notorious effect of an externally applied electric field on the molecule adsorption onto BPOs has been detected. In accordance, adsorption energy changes with the applied electric field direction, in such a way that the higher value is favored through an upwards-directed orientation of NO y SO2adsorbates. Results presented could help to enhancing the understanding of BPOs as possible candidates for applications in gas sensing.

6.
J Mol Model ; 27(6): 171, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002271

RESUMO

This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials.

7.
J Mol Model ; 27(5): 141, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909152

RESUMO

Structural, electronic, binding energies and magnetic properties of aluminum-doped and single vacancy blue phosphorene interacting with pollutant molecules are investigated using the density functional theory (DFT) with periodic boundary conditions. Acetylene, ozone, sulfur trioxide, hydrogen selenide, and sulfur dichloride molecules are considered to show the efficiency and enhancement of the sensing properties in comparison with the pristine blue phosphorene. Acetylene, sulfur trioxide, hydrogen selenide, and sulfur dichloride show chemisorption (> 0.5 eV/molecule) when interacting with the aluminum-doped system, but the ozone molecule dissociates in all configurations and symmetry sites. On the other hand, the acetylene, ozone, and sulfur trioxide with the single vacancy blue phosphorene exhibit chemisorption, the hydrogen selenide molecule exhibit a weak interaction energy, and the sulfur dichloride dissociates in all configurations and symmetry sites. In all the cases, the enhancement in the interaction energy was achieved when compared to other results for the same molecules. Finally, the single vacancy blue phosphorene shows a magnetic moment of ~1 µB/supercell, as induced by the vacancy.

8.
J Phys Condens Matter ; 33(17)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33470975

RESUMO

Using first-principles calculations, we have studied the band-gap modulation as function of applied strain in black phosphorene (BP). Dynamical stability has been assessed as well. Three cases have been considered, in the first and second, the strain was applied uniaxially, in thex- andy-axis, separately. In the third, an isotropic in-plane strain was analyzed. Different strain percentages have been considered, ranging from 4% to 20%. The evolution of the band-gap is studied by using standard DFT and the G0W0approach. The band-gap increases for small strains but then decreases for higher strains. A change in electronic behavior also takes place: the strained systems change from direct to indirect band-gap semiconductor, which is explained in terms of thesandp-orbitals overlap. Our study shows that BP is a system with a broad range of applications: in band-gap engineering, or as part of van der Waals heterostructures with materials of larger lattice parameters. Its stability, and direct band-gap behavior are not affected for less than 16% of uniaxial and biaxial strain. Our findings show that phosphorene could be deposited in a large number of substrates without losing its semiconductor behavior.

9.
J Mol Model ; 26(8): 204, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648129

RESUMO

The electronic structure of the van der Waals heterostructures (HSs) of the phosphorene (P) nanoflakes (NFs) with graphene (G) and its allotropy (H1 and H2) NFs, and their complexes with Li have been studied using dispersion-corrected TPSS functional. According to the calculations, the attractive interactions in HSs come from dispersion. It has a relatively small contribution to the binding energy in Li complexes, especially for these forming complexes with G, H1, or H2 NF side. The binding energies between the individual NFs and Li atoms increase in the order G < H1 = H2 = P. The formation of HSs results in a synergetic effect for Li binding energies. This effect is the most notable for phosphorene binding sites; however, it also holds for G, H1, and H2 NFs. The formation of complexes with Li always leads to the almost complete charge transfer from Li to the NFs or HSs. In the case of HSs, the unpaired electron of Li is always located at the carbon NF side independently on the Li binding location. The activation energies of Li hopping for individual NFs are notably higher for P comparing with G, H1, or H2 NFs. The formation of HSs rises slightly the activation energies of Li hopping due to the increase of binding energies in Li-HS complexes. Graphical abstract.

10.
J Mol Model ; 25(9): 292, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31475304

RESUMO

The electronic structure of phosphorene nanoflakes (PNFs) doped with Al and Si has been explored using hybrid functional BHandHlyp/def2-SVP and complete active space (CASSCF) methods. Doping increases the bond length alternation and changes the overall PNF shape. Doping also decreases singlet-triplet splitting in the PNFs. This effect is most notable for Si doping where singlet and triplet states become virtually degenerated. Doping also reduces band gaps and changes the nature of the ground states for Si-doped systems. The ground state of Si-doped PNFs becomes polyradicalic. In general, dopants with even number of valence electrons promote polyradicalic ground state. Doped systems show increased electron affinities (EAs), while the ionization potentials are much less affected. Larger EAs are related with the delocalization of an extra electron over the empty or partially empty 3p orbitals of the dopants. Doping increases the reorganization energies in all cases. Al-doped PNFs are the hole transport materials while Si-doped nanoflakes tend to be electron transport systems. Graphical abstract.

11.
ACS Nano ; 11(6): 6459-6466, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28558227

RESUMO

Forthcoming applications in electronics and optoelectronics make phosphorene a subject of vigorous research efforts. Solvent-assisted exfoliation of phosphorene promises affordable delivery in industrial quantities for future applications. We demonstrate, using equilibrium, steered and umbrella sampling molecular dynamics, that the 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquid is an excellent solvent for phosphorene exfoliation. The presence of both hydrophobic and hydrophilic moieties, as well as substantial shear viscosity, allows [EMIM][BF4] simultaneously to facilitate separation of phosphorene sheets and to protect them from getting in direct contact with moisture and oxygen. The exfoliation thermodynamics is moderately unfavorable, which indicates that an external stimulus is necessary. Unexpectedly, [EMIM][BF4] does not coordinates phosphorene by π-electron stacking with the imidazole ring. Instead, the solvation proceeds via hydrophobic side chains, while polar imidazole rings form an electrostatically stabilized protective layer. The simulations suggest that further efforts in solvent engineering for phosphorene exfoliation should concentrate on use of weakly coordinating ions and grafting groups that promote stronger dispersion interactions and on elongation of nonpolar chains.

12.
Beilstein J Nanotechnol ; 7: 1983-1990, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144546

RESUMO

We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal.

13.
ACS Nano ; 9(4): 4270-6, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25752593

RESUMO

Anisotropic materials are characterized by a unique optical response, which is highly polarization-dependent. Of particular interest are layered materials formed by the stacking of two-dimensional (2D) crystals that are naturally anisotropic in the direction perpendicular to the 2D planes. Black phosphorus (BP) is a stack of 2D phosphorene crystals and a highly anisotropic semiconductor with a direct band gap. We show that the angular dependence of polarized Raman spectra of BP is rather unusual and can be explained only by considering complex values for the Raman tensor elements. This result can be traced back to the electron-photon and electron-phonon interactions in this material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA