Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1280265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298921

RESUMO

Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods: In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results: Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions: We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.


Assuntos
Bacteriófagos , Mariposas , Terapia por Fagos , Fagos de Pseudomonas , Animais , Virulência , Pseudomonas aeruginosa , Fagos de Pseudomonas/genética , Fatores de Virulência/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
2.
mBio ; 13(6): e0147522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36314808

RESUMO

Bacteriophages put intense selective pressure on microbes, which must evolve diverse resistance mechanisms to survive continuous phage attacks. We used a library of spontaneous Bacteriophage Insensitive Mutants (BIMs) to learn how the plant pathogen Ralstonia solanacearum resists the virulent lytic podophage phiAP1. Phenotypic and genetic characterization of many BIMs suggested that the R. solanacearum Type II Secretion System (T2SS) plays a key role in phiAP1 infection. Using precision engineered mutations that permit T2SS assembly but either inactivate the T2SS GspE ATPase or sterically block the secretion portal, we demonstrated that phiAP1 needs a functional T2SS to infect R. solanacearum. This distinction between the static presence of T2SS components, which is necessary but not sufficient for phage sensitivity, and the energized and functional T2SS, which is sufficient, implies that binding interactions alone cannot explain the role of the T2SS in phiAP1 infection. Rather, our results imply that some aspect of the resetting of the T2SS, such as disassembly of the pseudopilus, is required. Because R. solanacearum secretes multiple virulence factors via the T2SS, acquiring resistance to phiAP1 also dramatically reduced R. solanacearum virulence on tomato plants. This acute fitness trade-off suggests this group of phages may be a sustainable control strategy for an important crop disease. IMPORTANCE Ralstonia solanacearum is a destructive plant pathogen that causes lethal bacterial wilt disease in hundreds of diverse plant hosts, including many economically important crops. Phages that kill R. solanacearum could offer effective and environmentally friendly wilt disease control, but only if the bacterium cannot easily evolve resistance. Encouragingly, most R. solanacearum mutants resistant to the virulent lytic phage phiAP1 no longer secreted multiple virulence factors and had much reduced fitness and virulence on tomato plants. Further analysis revealed that phage phiAP1 needs a functional type II secretion system to infect R. solanacearum, suggesting this podophage uses a novel infection mechanism.


Assuntos
Bacteriófagos , Ralstonia solanacearum , Solanum lycopersicum , Sistemas de Secreção Tipo II , Fatores de Virulência/genética , Ralstonia solanacearum/genética , Bacteriófagos/genética , Sistemas de Secreção Tipo II/metabolismo , Doenças das Plantas/microbiologia
3.
mSphere ; 5(4)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848007

RESUMO

Cholera remains a formidable disease, and reports of multidrug-resistant strains of the causative agent Vibrio cholerae have become common during the last 3 decades. The pervasiveness of resistance determinants has largely been ascribed to mobile genetic elements, including SXT/R391 integrative conjugative elements, IncC plasmids, and genomic islands (GIs). Conjugative transfer of IncC plasmids is activated by the master activator AcaCD whose regulatory network extends to chromosomally integrated GIs. MGIVchHai6 is a multidrug resistance GI integrated at the 3' end of trmE (mnmE or thdF) in chromosome 1 of non-O1/non-O139 V. cholerae clinical isolates from the 2010 Haitian cholera outbreak. In the presence of an IncC plasmid expressing AcaCD, MGIVchHai6 excises from the chromosome and transfers at high frequency. Herein, the mechanism of mobilization of MGIVchHai6 GIs by IncC plasmids was dissected. Our results show that AcaCD drives expression of GI-borne genes, including xis and mobIM , involved in excision and mobilization. A 49-bp fragment upstream of mobIM was found to serve as the minimal origin of transfer (oriT) of MGIVchHai6. The direction of transfer initiated at oriT was determined using IncC plasmid-driven mobilization of chromosomal markers via MGIVchHai6. In addition, IncC plasmid-encoded factors, including the relaxase TraI, were found to be required for GI transfer. Finally, in silico exploration of Gammaproteobacteria genomes identified 47 novel related and potentially AcaCD-responsive GIs in 13 different genera. Despite sharing conserved features, these GIs integrate at trmE, yicC, or dusA and carry a diverse cargo of genes involved in phage resistance.IMPORTANCE The increasing association of the etiological agent of cholera, Vibrio cholerae serogroup O1 and O139, with multiple antibiotic resistance threatens to deprive health practitioners of this effective tool. Drug resistance in cholera results mainly from acquisition of mobile genetic elements. Genomic islands conferring multidrug resistance and mobilizable by IncC conjugative plasmids were reported to circulate in non-O1/non-O139 V. cholerae clinical strains isolated from the 2010 Haitian cholera outbreak. As these genomic islands can be transmitted to pandemic V. cholerae serogroups, their mechanism of transmission needed to be investigated. Our research revealed plasmid- and genomic island-encoded factors required for the resistance island excision, mobilization, and integration, as well as regulation of these functions. The discovery of related genomic islands carrying diverse phage resistance genes but lacking antibiotic resistance-conferring genes in a wide range of marine dwelling bacteria suggests that these elements are ancient and recently acquired drug resistance genes.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas , Plasmídeos/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Antibacterianos/farmacologia , Cólera/microbiologia , Simulação por Computador , Conjugação Genética , Gammaproteobacteria/genética , Transferência Genética Horizontal , Genoma Bacteriano , Haiti , Humanos
4.
Viruses ; 11(7)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252667

RESUMO

Salmonella Infantis is considered in recent years an emerging Salmonella serovar, as it has been associated with several outbreaks and multidrug resistance phenotypes. Phages appear as a possible alternative strategy to control Salmonella Infantis (SI). The aims of this work were to characterize two phages of the Felixounavirus genus, isolated using the same strain of SI, and to expose them to interact in challenge assays to identify genetic and phenotypic changes generated from these interactions. These two phages have a shared nucleotide identity of 97% and are differentiated by their host range: one phage has a wide host range (lysing 14 serovars), and the other has a narrow host range (lysing 6 serovars). During the 12 h challenge we compared: (1) optical density of SI, (2) proportion of SI survivors from phage-infected cultures, and (3) phage titer. Isolates obtained through the assays were evaluated by efficiency of plating (EOP) and by host-range characterization. Genomic modifications were characterized by evaluation of single nucleotide polymorphisms (SNPs). The optical density (600 nm) of phage-infected SI decreased, as compared to the uninfected control, by an average of 0.7 for SI infected with the wide-host-range (WHR) phage and by 0.3 for SI infected with the narrow-host-range (NHR) phage. WHR phage reached higher phage titer (7 × 1011 PFU/mL), and a lower proportion of SI survivor was obtained from the challenge assay. In SI that interacted with phages, we identified SNPs in two genes (rfaK and rfaB), which are both involved in lipopolysaccharide (LPS) polymerization. Therefore, mutations that could impact potential phage receptors on the host surface were selected by lytic phage exposure. This work demonstrates that the interaction of Salmonella phages (WHR and NHR) with SI for 12 h in vitro leads to emergence of new phenotypic and genotypic traits in both phage and host. This information is crucial for the rational design of phage-based control strategies.


Assuntos
Myoviridae/genética , Fagos de Salmonella/genética , Salmonella/virologia , Sequência de Aminoácidos , Genoma Viral , Genótipo , Especificidade de Hospedeiro , Myoviridae/química , Myoviridae/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Fagos de Salmonella/química , Fagos de Salmonella/fisiologia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA