RESUMO
Neural entrainment, the synchronization of brain oscillations to the frequency of an external stimuli, is a key mechanism that shapes perceptual and cognitive processes.Objective.Using simulations, we investigated the dynamics of neural entrainment, particularly the period following the end of the stimulation, since the persistence (reverberation) of neural entrainment may condition future sensory representations based on predictions about stimulus rhythmicity.Methods.Neural entrainment was assessed using a modified Jansen-Rit neural mass model (NMM) of coupled cortical columns, in which the spectral features of the output resembled that of the electroencephalogram (EEG). We evaluated spectro-temporal features of entrainment as a function of the stimulation frequency, the resonant frequency of the neural populations comprising the NMM, and the coupling strength between cortical columns. Furthermore, we tested if the entrainment persistence depended on the phase of the EEG-like oscillation at the time the stimulus ended.Main Results.The entrainment of the column that received the stimulation was maximum when the frequency of the entrainer was within a narrow range around the resonant frequency of the column. When this occurred, entrainment persisted for several cycles after the stimulus terminated, and the propagation of the entrainment to other columns was facilitated. Propagation also depended on the resonant frequency of the second column, and the coupling strength between columns. The duration of the persistence of the entrainment depended on the phase of the neural oscillation at the time the entrainer terminated, such that falling phases (fromπ/2 to 3π/2 in a sine function) led to longer persistence than rising phases (from 0 toπ/2 and 3π/2 to 2π).Significance.The study bridges between models of neural oscillations and empirical electrophysiology, providing insights to the mechanisms underlying neural entrainment and the use of rhythmic sensory stimulation for neuroenhancement.
Assuntos
Eletroencefalografia , Periodicidade , Estimulação Acústica/métodos , Encéfalo/fisiologiaRESUMO
Neural entrainment is the synchronization of neural activity to the frequency of repetitive external stimuli, which can be observed as an increase in the electroencephalogram (EEG) power spectrum at the driving frequency, -also known as the steady-state response. Although it has been systematically reported that the entrained EEG oscillation persists for approximately three cycles after stimulus offset, the neural mechanisms underpinning it remain unknown. Focusing on alpha oscillations, we adopt the dynamical excitation/inhibition framework, which suggests that phases of entrained EEG signals correspond to alternating excitatory/inhibitory states of the neural circuitry. We hypothesize that the duration of the persistence of entrainment is determined by the specific functional state of the entrained neural network at the time the stimulus ends. Steady-state visually evoked potentials (SSVEP) were elicited in 19 healthy volunteers at the participants' individual alpha peaks. Visual stimulation consisted of a sinusoidally-varying light terminating at one of four phases: 0, π/2, π, and 3π/2. The persistence duration of the oscillatory activity was analyzed as a function of the terminating phase of the stimulus. Phases of the SSVEP at the stimulus termination were distributed within a constant range of values relative to the phase of the stimulus. Longer persistence durations were obtained when visual stimulation terminated towards the troughs of the alpha oscillations, while shorter persistence durations occurred when stimuli terminated near the peaks. Source localization analysis suggests that the persistence of entrainment reflects the functioning of fronto-occipital neuronal circuits, which might prime the sensory representation of incoming visual stimuli based on predictions about stimulus rhythmicity. Consequently, different states of the network at the end of the stimulation, corresponding to different states of intrinsic neuronal coupling, may determine the time windows over which coding of incoming sensory stimulation is modulated by the preceding oscillatory activity.