Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 8: 1210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046675

RESUMO

Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient's own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC "hot-spots" for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.

2.
Biochem Biophys Res Commun ; 484(3): 501-507, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28111344

RESUMO

Analysis of our Plasmodium falciparum malaria parasite peptides' 1H-NMR database in the search for H-bonds and π-interactions led us to correlate their presence or absence with a peptide's particular immunological behavior. It was concluded that a 26.5 ± 1.5 Å between positions 1 to 9 of the HLA-DRß1* interacting region was necessary for proper docking of 20mer-long peptides and these MHC Class II molecules for full-protective immunity. Presence of intramolecular H-bonds or π-interactions leading to righ-handed α-helix or ß-turn conformation in this peptide's region induces different immune responses or none. PPIIL conformation and the absence of any intramolecular interaction thus became the first feature characterising our immune protection-inducing structures as malaria vaccine candidates.


Assuntos
Desenho de Fármacos , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/ultraestrutura , Vacinas Antimaláricas/química , Peptídeos/química , Mapeamento de Interação de Proteínas/métodos , Sítios de Ligação , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/ultraestrutura , Ligação de Hidrogênio , Ligação Proteica , Conformação Proteica , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Vacinas Sintéticas/química , Vacinas Sintéticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA