Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4064-4078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829747

RESUMO

Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.


Assuntos
Arachis , Armazenamento de Alimentos , Helianthus , Polifenóis , Sementes , Sementes/química , Helianthus/química , Armazenamento de Alimentos/métodos , Arachis/química , Humanos , Composição de Medicamentos/métodos , Comportamento do Consumidor , Paladar , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conservação de Alimentos/métodos
2.
J Sci Food Agric ; 102(6): 2396-2403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34625975

RESUMO

BACKGROUND: The peanut skin (PS) is considered as an industrial waste with undervalued applications. Although several studies report potent antioxidant capacities of PS phenolics, the effectiveness in highly unsaturated lipid systems has not yet been evaluated. The objectives of the present study were two-fold: (i) to characterize a PS phenolic extract (PSE) obtained by means of a green technology and (ii) to evaluate its antioxidant efficacy on pure chia oil and chia oil in water (O/W) acid emulsion. RESULTS: PSE was composed mainly of monomeric and condensed flavonoids (procyanidin and proanthocyanidin oligomers). PSE displayed strong antioxidant properties as measured by different reducing power and radical scavenging capacities [IC50  = 0.36 µg dry extract (DE) mL-1 for ferric reducing antioxidant power; IC50  = 4.96 µg DE mL-1 for 2,2-diphenyl-1-picrylhydrazyl (DPPH)• ; IC50  = 6.01 µg DE mL-1 for 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS)•+ ; IC50  = 2.62 µg DE mL-1 for HO• ]. It also showed high antioxidant efficacy when tested in pure chia oil under accelerated oxidation conditions (Rancimat, 100 °C). When added to the O/W emulsions maintained at 40 °C for 15 days, the PSE was more effective than a synthetic antioxidant (tert-butylhydroquinone) with respect to minimizing the formation and degradation of lipid hydroperoxides. CONCLUSIONS: The antioxidant efficacy of PSE was primarily attributed to the abundance of compounds with a high number of phenolic-OH groups. Because they were found to cover a relatively wide range of partition coefficients, the antioxidant properties could be also enhanced by effect of both interfacial and solubility phenomena. All of these features allow the potential use of PSE as a natural antioxidant in different types of foods, including acid emulsion systems. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Arachis , Antioxidantes/química , Emulsões , Solventes , Água/química
3.
Environ Sci Pollut Res Int ; 28(27): 36453-36463, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33694109

RESUMO

In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.


Assuntos
Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
4.
Food Res Int ; 108: 93-100, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735106

RESUMO

This study aimed to develop chitosan films incorporating natural antioxidants from peanut skin (EPS) and pink pepper residue (EPP) extracts, as well as to evaluate their effects on lipid oxidation, pH, color, and microbial counts of a restructured chicken product. EPS had higher phenolic content and antioxidant activity compared to EPP. When both extracts were applied to chicken meat and the chitosan films, there were no differences for color, pH and total mesophilic counts compared to control at the end of the storage period. For lipid oxidation (peroxide value and thiobarbituric acid reactive substances), both extracts proved to be as effective as butylated hydroxytoluene to maintain the oxidative stability of the chicken product. The microbial counts of psychrotrophic microorganisms were significantly lower for treatments with active films. Chitosan active films with residue extracts may maintain the quality of chicken products due to their antioxidant and antimicrobial potential.


Assuntos
Antioxidantes/química , Quitosana/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Conservantes de Alimentos/química , Resíduos Industriais , Indústria de Embalagem de Carne/métodos , Produtos Avícolas/análise , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antioxidantes/isolamento & purificação , Arachis , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cor , Microbiologia de Alimentos/métodos , Conservantes de Alimentos/isolamento & purificação , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Lipídeos/química , Nozes , Oxirredução , Piper , Produtos Avícolas/microbiologia , Substâncias Reativas com Ácido Tiobarbitúrico/química , Fatores de Tempo
5.
Food Chem ; 237: 538-544, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764032

RESUMO

Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MSn. Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49µgphenolics/mL) was higher but comparable to Ampicillin (10µg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Arachis , Flavonoides/farmacologia , Hidroxibenzoatos/farmacologia , Animais , Fenóis , Extratos Vegetais , Staphylococcus aureus
6.
Int J Mol Sci ; 13(3): 3073-3084, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489142

RESUMO

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.


Assuntos
Antioxidantes/análise , Antioxidantes/efeitos da radiação , Arachis/química , Arachis/efeitos da radiação , Flavonoides/análise , Flavonoides/efeitos da radiação , Irradiação de Alimentos , Raios gama , Extratos Vegetais/química , Extratos Vegetais/efeitos da radiação , Polifenóis/análise , Polifenóis/efeitos da radiação , Proantocianidinas/análise , Proantocianidinas/efeitos da radiação , Sementes/química , Sementes/efeitos da radiação , Óleo de Soja/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA