Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(12): e0130923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092658

RESUMO

IMPORTANCE: Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.


Assuntos
Evolução Molecular , Duplicação Gênica , Vírus Gigantes , Genoma Viral , Vírus Gigantes/genética , Filogenia
2.
Trends Genet ; 35(1): 42-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366621

RESUMO

Studies on the fate of Saccharomyces cerevisiae paralogous gene pairs that arose through a whole-genome duplication event have shown diversification of retained duplicated genes. Paralogous functional specialization often results in improved function and/or novel function that could contribute to the adaptation of the organism to a new lifestyle. Here, we analyze and discuss particular case studies of paralogous functional diversification that could have played a role in the acquisition of yeast fermentative metabolism.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Duplicação Gênica/genética , Filogenia , Saccharomyces cerevisiae/metabolismo
3.
Front Microbiol ; 9: 944, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867852

RESUMO

Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in "sensu strictu" yeasts suggests this protein has a yet undiscovered physiological function.

4.
FEBS J ; 285(12): 2205-2224, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29688630

RESUMO

Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators. Oxalacetate, glutamine, and/or asparagine are modulators causing the MD reaction to become preferred over the FH reaction. Activity profiles as a function of pH suggest a suboptimal FUM activity in Arabidopsis cells; moreover, the direction of the FUM reaction is sensitive to pH changes. Under mild oxidation conditions, AtFUMs form high mass molecular aggregates, which present both FUM activities decreased to a different extent. The biochemical properties of oxidized AtFUMs (oxAtFUMs) were completely reversed by NADPH-supplied Arabidopsis leaf extracts, suggesting that the AtFUMs redox regulation can be accomplished in vivo. Mass spectrometry analyses indicate the presence of an active site-associated intermolecular disulfide bridge in oxAtFUMs. Finally, a phylogenetic approach points out that other plant species may also possess cytosolic FUM2 enzymes mainly encoded by paralogous genes, indicating that the evolutionary history of this trait has been drawn through a process of parallel evolution. Overall, according to our results, a multilevel regulatory pattern of FUM activities emerges, supporting the role of this enzyme as a carbon flow monitoring point through the organic acid metabolism in plants.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Fumarato Hidratase/química , Fumaratos/química , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase/química , Regulação Alostérica , Arabidopsis/química , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Asparagina/metabolismo , Sítios de Ligação , Evolução Molecular , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Expressão Gênica , Glutamina/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Modelos Moleculares , NADP/metabolismo , Ácido Oxaloacético/metabolismo , Oxirredução , Filogenia , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA