Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biochimie ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369940

RESUMO

Obesity increases the risk and mortality of breast cancer through dysregulated secretion of proinflammatory cytokines and tumor adipokines that induce an inflammatory breast microenvironment. Resistin is an adipokine secreted by adipocytes, immune cells, and predominantly macrophages, which contributes to cancer progression, but its molecular mechanism in cancer is not completely described. In this study, we analyzed the relationship of resistin on breast cancer prognosis and tumor progression and the effect in vitro of resistin on p38 and ERK1/2 activation in breast cancer cell lines. By bioinformatic analysis, we found that resistin is overexpressed in the basal subtype triple-negative breast cancer and is related to poor prognosis. In addition, we demonstrated a positive correlation between RETN and MAPK3 expression in basal triple-negative breast cancer. Importantly, we found amplifications of the RETN gene in at least 20 % of metastatic samples from patients with breast cancer. Most samples with RETN amplifications metastasized to bone and showed high expression of IL-8 (CXCL8) and IL-6 (IL6). Finally, resistin could be considered a prognostic marker for basal triple-negative breast cancer, and we also proposed the possibility that resistin-induced cell migration involves the activation of MAPK in breast cancer cells.

2.
Biochimie ; 223: 41-53, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608750

RESUMO

The endogenous metabolite of estradiol, estradiol 17ß-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.


Assuntos
Estradiol , Hepatócitos , NADPH Oxidases , Espécies Reativas de Oxigênio , Animais , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/metabolismo , Estradiol/análogos & derivados , Feminino , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/patologia , Ratos Wistar , Acetofenonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Colestase Intra-Hepática , Complicações na Gravidez , Transportadores de Cassetes de Ligação de ATP
3.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428770

RESUMO

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Assuntos
Citrus , Endotoxemia , Flavanonas , Camundongos , Animais , Flavonoides/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/uso terapêutico , Anti-Inflamatórios/farmacologia
4.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37533216

RESUMO

AIMS: To evaluate the adhesion capacity and anti-inflammatory activity of lactic acid bacteria (LAB) isolated from raw cow milk and artisan cheese in Southern Brazil, investigating their effect on the release of cytokines such as TNF-α and IL-10 and their influence on the activation of the p38/MAPK pathway. METHODS AND RESULTS: Lentilactobacillus parabuchneri ML4, Lacticaseibacillus paracasei ML33, Lactiplantibacillus pentosus ML82, Lactiplantibacillus plantarum CH131, and L. paracasei CH135 demonstrated high adhesion potential in an in vitro model of the intestinal epithelium, as well as anti-inflammatory activity. After a 4-hour treatment, the strains significantly increased TNF-α levels, while a 24-hour treatment led to a significant decrease in TNF-α release. Moreover, IL-10 levels significantly increased after 24-hour and 48-hour treatments with LAB. The inhibition of p38/MAPK phosphorylation was identified as one of the mechanisms by which the L. paracasei ML33 and L. plantarum CH131 strains suppressed the production and release of TNF-α. CONCLUSIONS: We identified LAB strains with potential anti-inflammatory properties that could adhere to the intestinal mucosa and alleviate the inflammatory response by reducing the production and release of TNF-α through the inhibition of the p38/MAPK pathway, while promoting the production of IL-10.


Assuntos
Lactobacillales , Probióticos , Animais , Fator de Necrose Tumoral alfa , Interleucina-10 , Brasil , Leite/microbiologia , Anti-Inflamatórios
5.
Biogerontology ; 24(6): 913-923, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458859

RESUMO

One of the theories related to aging is the increase in oxidative stress. Given this, the objective of the study is to evaluate the cellular mechanisms responsible for the resveratrol antioxidant effect on leukocytes from donors aged between 20 and 80 years old. For this, leukocytes from donors of three age groups (20-39, 40-59 and 60-80) were isolated. Image-iT™LIVE Green Reactive Oxygen Species (ROS) Kit was used. Reactive Nitrogen Species (RNS) analysis was performed by measuring nitric oxide and peroxynitrite. The PKA, Akt/PKB and p38-MAPK were evaluated by chemiluminescence. The statistical analysis between age and treatments were performed by Pearson correlation (*p < 0.05). It was possible to observe the antioxidant effect of resveratrol in all age groups. The correlation results show loss of resveratrol effect in decreasing ROS in leukocytes from older donors. We observed an active antioxidant effect of p38-MAPK in all ages, with resveratrol acting on it. The PKA and Akt/PKB were active in leukocytes from donors aged 20-59. In cells from donors older than 60, these pathways are silenced, and an effect is also not observed in cells treated with resveratrol. Therefore, resveratrol showed antioxidant effect in all age, although it was more pronounced in leukocytes from younger. One of resveratrol's mechanisms is due to the activation of the PKA and Akt/PKB, which were activated in younger donor cells.


Assuntos
Antioxidantes , Proteínas Proto-Oncogênicas c-akt , Antioxidantes/farmacologia , Resveratrol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232927

RESUMO

Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , NF-kappa B , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Masculino , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Oligodesoxirribonucleotídeos , Dor Pós-Operatória/tratamento farmacológico , Prostaglandinas E , Canais de Sódio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Front Pharmacol ; 13: 975197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299892

RESUMO

Gliomas are extremely debilitating malignant brain tumors with very limited response to therapies. The initiation and progression of gliomas can be attributed to several molecular abnormalities, such as mutations in important regulatory networks. In this regard, the mitogen-activated protein kinases (MAPKs) arise as key signaling pathways involved in cell proliferation, survival, and differentiation. MAPK pathway has been altered in most glial tumors. In glioma cells, the activation of p38 MAPK contributes to tumor invasion and metastasis and is positively correlated with tumor grade, being considered a potential oncogenic factor contributing to brain tumorigenesis and chemotherapy resistance. Hence, a better understanding of glioma pathogenesis is essential to the advancement of therapies that provide extended life expectancy for glioma patients. This review aims to explore the role of the p38 MAPK pathway in the genesis and progression of malignant brain tumors.

8.
Clinics (Sao Paulo) ; 77: 100046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588578

RESUMO

OBJECTIVE: To explore the role and possible mechanisms of action of apolipoprotein O (APOO) in autophagy in Myocardial Infarction (MI) in vivo and in vitro. METHODS: Differential gene expression and single Gene Set Enrichment Analysis (GSEA) were used to evaluate MI-related candidate genes. Animal and cell MI models were established. Sh-APOO, si-APOO, and SB203580 were used to inhibit the expression of APOO or p38MAPK. Western blot and qRT-PCR were used to analyze the expression levels of the target protein or mRNA. Apoptosis was observed using the TUNEL assay. The plasma concentrations of CK-MB and cTn-I in humans and mice were determined. RESULTS: In the GSE23294 dataset, APOO mRNA was highly expressed in the left ventricle of mice with MI; GSEA revealed that APOO was positively correlated with p38MAPK, autophagy, and apoptosis. The plasma concentration of APOO in patients with MI was significantly higher than that in healthy subjects. The expression of APOO, Beclin-1, LC3, and Bax in mouse and AC16 cell MI models increased, while the level of Bcl-2 decreased. After silencing the APOO gene, the expression of APOO was downregulated; meanwhile, changes in autophagy, apoptosis and myocardial cell injury were reversed in vivo and in vitro. Furthermore, autophagy was alleviated after AC16 cells were treated with SB203580. CONCLUSIONS: The increased APOO expression in mouse and cell MI models may activate autophagy and apoptosis by regulating the p38MAPK signaling pathway, thus aggravating the myocardial injury.


Assuntos
Apolipoproteínas , Infarto do Miocárdio , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Apolipoproteínas/metabolismo , Apoptose , Autofagia , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , RNA Mensageiro , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Endocr Relat Cancer ; 29(6): 359-373, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35324456

RESUMO

Among pituitary adenomas, prolactinomas are the most frequently diagnosed (about 50%). Dopamine agonists are generally effective in the treatment of prolactinomas. However, a subset of about 25% of patients does not respond to these agents. The management of drug-resistant prolactinomas remains a challenge for endocrinologists and new inhibitory treatments are needed. Pituitary activins inhibit lactotroph function. Its expression and action were found reduced in animal models of lactotroph hyperplasia (female mice overexpressing the B subunit of the human chorionic gonadotrophin and female mice knockout for dopamine receptor type 2). In these models, an oophorectomy avoids prolactinoma development. Hormonal replacement with oestradiol and/or progesterone is not enough to reach the tumor size observed in transgenic females. We postulated that the loss of gonadal inhibins after an oophorectomy contributes to prevent hyperplasia development. Here, we demonstrated that an oophorectomy at 2 months age recovers the following in adulthood: (i) pituitary activin expression, (ii) activin receptor expression specifically in lactotroph population, (iii) activin biological activity in lactotrophs with a concomitant reduction of Pit-1 expression. To summarize, when an oophorectomy is performed, inhibins are lost and the inhibitory action of pituitary activins on lactotroph population is recovered, helping to prevent lactotroph hyperplasia development. These results emphasize the importance of the inhibitory action of activins on lactotroph function, positioning activins as a good therapeutic target for the treatment of resistant prolactinomas.


Assuntos
Lactotrofos , Neoplasias Hipofisárias , Prolactinoma , Ativinas/metabolismo , Adulto , Animais , Feminino , Humanos , Hiperplasia , Inibinas/metabolismo , Inibinas/uso terapêutico , Lactotrofos/metabolismo , Lactotrofos/patologia , Camundongos , Ovariectomia , Neoplasias Hipofisárias/metabolismo , Prolactina/metabolismo , Prolactinoma/metabolismo , Prolactinoma/prevenção & controle
10.
Can J Physiol Pharmacol ; 100(5): 453-463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34932399

RESUMO

The complexity of hepatocellular carcinoma (HCC) signaling and the failure of pharmacological therapeutics reveal the significance of establishing new anti-cancer strategies. Interferon alpha (IFN-α) has been used as adjuvant therapy for reducing HCC recurrence and improving survival. Delta-tocotrienol (δ-tocotrienol), a natural unsaturated isoform of vitamin E, is a promising candidate for cancer treatment. In this study, we evaluated whether the combination of δ-tocotrienol with IFN-α displays significant advantages in the treatment of HCC cells. Results showed that the combination significantly decreased cell viability, migration and invasion of HCC cells compared with single therapies. Combining δ-tocotrienol and IFN-α enhanced the decrease in proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase (MMP) 7 and MMP-9. The combination also produced an enhancement of apoptosis together with increased Bax/Bcl-xL ratio and reactive oxygen species (ROS) generation. δ-tocotrienol induced Notch1 activation and changes in Erk and p38 MAPK signaling status. Blocking experiments confirmed that ROS and Erk are involved, at least in part, in the anti-cancer effects of the combined treatment. In conclusion, the combination of δ-tocotrienol with IFN-α therapy showed promising results for HCC cell treatment, which makes the combination of cytokine-based immunotherapy with natural products a potential strategy against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Vitamina E/uso terapêutico
11.
Clinics ; Clinics;77: 100046, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1384609

RESUMO

Abstract Objectives To explore the role and possible mechanisms of action of apolipoprotein O (APOO) in autophagy in Myocardial Infarction (MI) in vivo and in vitro. Methods Differential gene expression and single Gene Set Enrichment Analysis (GSEA) were used to evaluate MI-related candidate genes. Animal and cell MI models were established. Sh-APOO, si-APOO, and SB203580 were used to inhibit the expression of APOO or p38MAPK. Western blot and qRT-PCR were used to analyze the expression levels of the target protein or mRNA. Apoptosis was observed using the TUNEL assay. The plasma concentrations of CK-MB and cTn-I in humans and mice were determined. Results In the GSE23294 dataset, APOO mRNA was highly expressed in the left ventricle of mice with MI; GSEA revealed that APOO was positively correlated with p38MAPK, autophagy, and apoptosis. The plasma concentration of APOO in patients with MI was significantly higher than that in healthy subjects. The expression of APOO, Beclin-1, LC3, and Bax in mouse and AC16 cell MI models increased, while the level of Bcl-2 decreased. After silencing the APOO gene, the expression of APOO was downregulated; meanwhile, changes in autophagy, apoptosis and myocardial cell injury were reversed in vivo and in vitro. Furthermore, autophagy was alleviated after AC16 cells were treated with SB203580. Conclusions The increased APOO expression in mouse and cell MI models may activate autophagy and apoptosis by regulating the p38MAPK signaling pathway, thus aggravating the myocardial injury. HIGHLIGHTS APOO was highly expressed in the left ventricle of mice with myocardial infarction. Increasing of APOO may activate autophagy and apoptosis in myocardial infarction. The regulation of APOO in autophagy and apoptosis was regulated by p38MAPK signaling pathway.

12.
Physiol Rep ; 9(22): e15093, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806317

RESUMO

We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 µM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aß content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Etoxzolamida/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Benzofenantridinas/farmacologia , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Preparação de Coração Isolado , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica , Proteína Quinase C/antagonistas & inibidores , Piridinas/farmacologia , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
13.
Eur J Pharmacol ; 907: 174250, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118223

RESUMO

We studied the effect and the mechanisms of action of 2α,3ß,23-trihydroxyolean-12-ene (THO), from Croton heterodoxus Baill. (Euphorbiaceae), in glucose uptake in hyperglycemic rats. The effect of in vivo pretreatment with THO in hyperglycemic rats was analyzed. The in vitro effects of THO were observed in adipocytes and in adipose tissue. THO reduced glycemia, in part by increasing serum insulin and augmenting the disposal of glucose as glycogen in hepatocytes but did not change the serum concentration of glucagon-like peptide-1. THO increased glucose uptake in adipocytes and in adipose tissue by a mechanism dependent on phosphatidylinositol 3-kinase vesicular traffic and on the process of vesicle fusion at the plasma membrane in regions containing cholesterol, indicating the involvement of glucose transporter-4 (GLUT4). This triterpene may act solely via the activation and translocation of GLUT4 (rather than via nuclear actions, such as upregulation of GLUT4 synthesis), since THO did not alter the amount of GLUT4 mRNA or the content of GLUT4. Consistent with these data, the stimulatory effect of this triterpene on the quantity of GLUT4 in the membrane fraction was dependent upon p38 phosphorylation. In this experimental model, orally administered 10 mg/kg THO did not modulate extracellular serum lactate dehydrogenase. In conclusion, THO decreases hyperglycemia by increasing serum insulin and hepatic glycogen content. The THO mechanism of action on adipose tissue for glucose uptake is suggested to be via GLUT4 translocation stimulation mediated by a p38-dependent mechanism. THO is a potential antihyperglycemic agent that acts in a target tissue for glucose homeostasis.


Assuntos
Insulina , Glicemia/metabolismo , Glucose , Homeostase/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo
14.
Front Microbiol ; 12: 659028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912151

RESUMO

Heme oxygenase-1 (HO-1) enzyme exerts beneficial effects at the maternal-fetal interface, especially in trophoblasts, being involved in survival and maturation of these cell phenotypes. Trophoblast cells play essential roles throughout pregnancy, being the gateway for pathogens vertically transmitted, such as Toxoplasma gondii. It was previously shown that HO-1 activity was involved in the control of T. gondii infection in vivo; however, its contribution in trophoblast cells during T. gondii infection, remain undefined. Thus, this study aimed to investigate the influence of HO-1 in T. gondii-infected BeWo and HTR-8/SVneo human trophoblast cells. For this purpose, trophoblast cells were infected and the HO-1 expression was evaluated. T. gondii-infected BeWo cells were treated with hemin or CoPPIX, as inducers of HO-1, or with bilirubin, an end-product of HO-1, and the parasitism was quantified. The involvement of p38 MAPK, a regulator of HO-1, and the cytokine production, were also evaluated. It was found that T. gondii decreased the HO-1 expression in BeWo but not in HTR-8/SVneo cells. When treated with the HO-1 inducers or bilirubin, BeWo cells reduced the parasite proliferation. T. gondii also decreased the p38 MAPK phosphorylation in BeWo cells; on the other hand, HO-1 induction sustained its activation. Finally, the IL-6 production was upregulated by HO-1 induction in T. gondii-infected cells, which was associated with the control of infection.

15.
Biol Res ; 54(1): 7, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653412

RESUMO

BACKGROUND: Leaves of the natural plant lotus are used in traditional Chinese medicine and tea production. They are rich in flavonoids. METHODS: In this study, lotus leaf flavonoids (LLF) were applied to human lung cancer A549 cells and human small cell lung cancer cells H446 in vitro to verify the effect of LLF on apoptosis in these cells through the ROS/p38 MAPK pathway. RESULTS: LLF had no toxic effect on normal cells at concentrations up to 500 µg/mL, but could significantly inhibit the proliferation of A549 cells and H446 cells. Flow cytometry showed that LLF could induce growth in A549 cells. We also found that LLF could increase ROS and MDA levels, and decrease SOD activity in A549 cells. Furthermore, qRT-PCR and western blot analyses showed that LLF could upregulate the expression of p38 MAPK (p-p38 MAPK), caspase-3, caspase-9, cleaved caspase-3, cleaved caspase-9 and Bax and downregulate the expression of Cu/Zn SOD, CAT, Nrf2, NQO1, HO-1, and Bcl-2 in A549 cells. Results of HPLC showed that LLF mainly contain five active substances: kaempferitrin, hyperoside, astragalin, phloridzin, and quercetin. The apoptosis-inducing effect of LLF on A549 cells came from these naturally active compounds. CONCLUSIONS: We have shown in this study that LLF is a bioactive substance that can induce apoptosis in A549 cells in vitro, and merits further research and development.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Lotus/química , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células A549 , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos
16.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(12): e10867, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1345571

RESUMO

Lung cancer is one of the most common cancers worldwide. TRPV4 belongs to the 'transient receptor potential' (TRP) superfamily. It has been identified to profoundly affect a variety of physiological processes, including nociception, heat sensation, and inflammation. Unlike other TRP superfamily channels, its roles in cancers are unknown. Here, we elucidated the effects of TRPV4 and molecular mechanisms in human lung cancer cells. The levels of TRPV4 were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis was determined by FACS assay. The results demonstrated that low levels of TRPV4 were detected in clinical lung carcinoma specimens. Over-expression of TRPV4 induced cell death and inhibited cell proliferation and migration in A549 cells and H460 cells. Moreover, over-expression of TRPV4 enhanced the activation of p38 MAPK signal pathway. Inhibition of p38 MAPK abolished the effects of TRPV4 on cell proliferation, apoptosis, and migration in A549 cells. Collectively, our findings indicated that TRPV4 induced apoptosis via p38 MAPK in human lung cancer cells and suggested that TRPV4 was a potential target for therapy of human lung cancers.

17.
Acta cir. bras ; Acta cir. bras;36(10): e361004, 2021. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1349863

RESUMO

ABSTRACT Purpose: To investigate the effects of propofol on inflammatory response and activation of p38 mitogen-activated protein kinase (MAPK) signaling pathway in rats with ventilator-associated lung injury (VALI). Methods: Thirty-six Sprague Dawley (SD) rats were divided into control, VALI and VALI+propofol groups. The VALI group received the mechanical ventilation for 2 h. The VALI+propofol group received the mechanical ventilation for 2 h, which was accompanied by intravenous injection of propofol with dose of 8 mg·kg-1·h-1. At the end, the mean arterial pressure (MAP) and blood gas indexes were measured, and the lung wet/dry mass ratio (W/D) and biochemical indexes of lung tissue and bronchoalveolar lavage fluid (BALF) were determined. Results: Compared with VALI group, in VALI+propofol group the blood pH, partial pressure of oxygen, partial pressure of carbon dioxide and MAP were increased, the lung W/D, lung tissue myeloperoxidase activity and total protein concentration, white blood cell count, and tumor necrosis factor α, interleukin 1β and interleukin 6 levels in BALF were decreased, and the p-p38 MAPK protein expression level and phosphorylated p38 MAPK (p-p38 MAPK)/p38 MAPK ratio were decreased. Conclusions: Propofol treatment may alleviate the VALI in rats by reducing the inflammatory response and inhibiting the activation of p38 MAPK signaling pathway.


Assuntos
Animais , Ratos , Propofol/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Transdução de Sinais , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pulmão/metabolismo
18.
Biol. Res ; 54: 7-7, 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1505800

RESUMO

BACKGROUND: Leaves of the natural plant lotus are used in traditional Chinese medicine and tea production. They are rich in flavonoids. METHODS: In this study, lotus leaf flavonoids (LLF) were applied to human lung cancer A549 cells and human small cell lung cancer cells H446 in vitro to verify the effect of LLF on apoptosis in these cells through the ROS/p38 MAPK pathway. RESULTS: LLF had no toxic effect on normal cells at concentrations up to 500 µg/mL, but could significantly inhibit the proliferation of A549 cells and H446 cells. Flow cytometry showed that LLF could induce growth in A549 cells. We also found that LLF could increase ROS and MDA levels, and decrease SOD activity in A549 cells. Furthermore, qRT-PCR and western blot analyses showed that LLF could upregulate the expression of p38 MAPK (p-p38 MAPK), caspase-3, caspase-9, cleaved caspase-3, cleaved caspase-9 and Bax and downregulate the expression of Cu/Zn SOD, CAT, Nrf2, NQO1, HO-1, and Bcl-2 in A549 cells. Results of HPLC showed that LLF mainly contain five active substances: kaemp-feritrin, hyperoside, astragalin, phloridzin, and quercetin. The apoptosis-inducing effect of LLF on A549 cells came from these naturally active compounds. CONCLUSIONS: We have shown in this study that LLF is a bioactive substance that can induce apoptosis in A549 cells in vitro, and merits further research and development.


Assuntos
Humanos , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Lotus/química , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Folhas de Planta/química , Proliferação de Células , Compostos Fitoquímicos/farmacologia , Células A549 , Neoplasias Pulmonares/tratamento farmacológico
19.
Eur J Cell Biol ; 99(6): 151096, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32800275

RESUMO

GPC3 is a proteoglycan involved in the control of proliferation and survival, which has been linked to several tumor types. In this respect, we previously demonstrated that normal breast tissues exhibit high levels of GPC3, while its expression is diminished in tumors. However, the role of the GPC3 downregulation in breast cancer progression and its molecular and cellular operational machineries are not fully understood. In this study we showed that GPC3 reverts the epithelial-to-mesenchymal transition (EMT) underwent by mammary tumor cells, blocks metastatic spread and induces dormancy at secondary site. Using genetically modified murine breast cancer cell sublines, we demonstrated that the phospho-Erk/phospho-p38 ratio is lower in GPC3 reexpressing cells, while p21, p27 and SOX2 levels are higher, suggesting a dormant phenotype. In vivo metastasis assays confirmed that GPC3 reexpressing cells reduce their metastatic ability. Interestingly, the presence of dormant cells was evidenced in the lungs of inoculated mice. Dormant cells could reactivate their proliferative capacity, remain viable as well as tumorigenic, but they reentered in dormancy upon reaching secondary site. We also proved that GPC3 inhibits metastasis through p38 pathway activation. The in vivo inhibition of p38 induced an increase in cell invasion of GPC3 reexpressing orthotropic tumors as well as in spontaneous and experimental metastatic dissemination. In conclusion, our study shows that GPC3 returns mesenchymal-like breast cancer cells to an epithelial phenotype, impairs in vivo metastasis and induces tumor dormancy through p38 MAPK signaling activation. These results help to identify genetic determinants of dormancy and suggest the translational potential of research focusing in GPC3.


Assuntos
Neoplasias da Mama/genética , Glipicanas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Metástase Neoplásica , Transdução de Sinais
20.
Cardiovasc Diabetol ; 19(1): 56, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375786

RESUMO

BACKGROUND: The intracellular ROCK signaling pathway is an important modulator of blood pressure and of cardiovascular and renal remodeling when Rho-kinase activity is increased. Besides, in preclinical models of diabetes, ROCK activation has also a role in abnormal glucose metabolism as well as in subsequent vascular and myocardial dysfunction. In humans, there are a few data assessing ROCK activation in patients with type 2 diabetes mellitus (T2D) and no studies assessing upstream/downstream components of the ROCK pathway. We assessed here levels of ROCK activation and some of the RhoA/ROCK cascade molecules in peripheral blood mononuclear cells (PBMCs) in T2D patients under current treatment. METHODS: Cross-sectional observational study comparing 28 T2D patients under current antidiabetic treatment with 31 consecutive healthy subjects, matched by age and gender. Circulating levels of malondialdehyde, angiotensin II and inflammatory cytokines IL-6 and IL-8 were determined in all subjects. ROCK activation in PMBCs, upstream and downstream cascade proteins, and levels of the proinflammatory molecules VCAM, ICAM-1 and IL-8 were determined in their PMBCs by Western blot. RESULTS: Compared to healthy controls, ROCK activation in T2D patients measured by 2 direct ROCK targets in PBMCs was increased by 420 and 570% (p < 0001) and it correlated significantly with serum glucose levels. p38 MAPK phosphorylation (downstream from ROCK) and JAK-2 (upstream from ROCK) were significantly higher in the T2D patients by 580% and 220%, respectively. In T2D patients, significantly increased PBMC levels of the proinflammatory molecules VCAM-1, ICAM-1 and IL-8 were observed compared to control subjects (by 180%, 360% and 260%, respectively). Circulating levels of Ang II and MDA were significantly higher in T2D patients by 29 and 63%, respectively. CONCLUSIONS: T2D patients under treatment with glucose-lowering drugs, antihypertensive treatment as well as with statins have significantly increased ROCK activation in their circulating leukocytes along with higher phosphorylation of downstream cascade proteins despite pharmacologic treatment, along with increased plasma angiotensin II and MDA levels. ROCK inhibition might have an additional role in the prevention and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Leucócitos Mononucleares/enzimologia , Quinases Associadas a rho/sangue , Idoso , Angiotensina II/sangue , Anti-Hipertensivos/uso terapêutico , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativação Enzimática , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipoglicemiantes/uso terapêutico , Molécula 1 de Adesão Intercelular/sangue , Interleucina-8/sangue , Janus Quinase 2/sangue , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA