Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734330

RESUMO

This study investigated the hypothesis that methionine supplementation of Japanese quail (Coturnix coturnix japonica) hens can reduce the effects of oxidative stress and improve the performance of the offspring exposed to heat stress during growth. For that, the quail hens were fed with three diets related to the methionine supplementation: methionine-deficient diet (Md); diet supplemented with the recommended methionine level (Met1); and diet supplemented with methionine above the recommended level (Met2). Their chicks were identified, weighed, and housed according to the maternal diet group from 1 to 14 d of age. On 15 d of age, chicks were weighed and divided into two groups: thermoneutral ambient (constant temperature of 23 °C) and intermittent heat stress ambient (daily exposure to 34 °C for 6 h). Methionine-supplemented (Met1 and Met2) hens had higher egg production, better feed conversion ratio, higher hatchability of total and fertile eggs, and offspring with higher body weight. Supplemented (Met1 and Met2) hens showed greater expression of glutathione synthase (GSS) and methionine sulfoxide reductase A (MSRA) genes, greater total antioxidant capacity, and lower lipid peroxidation in the liver. The offspring of hens fed the Met2 diet had lower death rate (1 to 14 d), higher weight on 15 d of age, weight gain, and better feed conversion ratio from 1 to 14 d of age. Among chicks reared under heat stress, the progeny of methionine-supplemented hens had higher weight on 35 d, weight gain, expression of GSS, MSRA, and thermal shock protein 70 (HSP70) genes, and total antioxidant capacity in the liver, as well as lower heterophil/lymphocyte ratio. Positive correlations between expression of glutathione peroxidase 7 (GPX7) and MSRA genes in hens and offspring were observed. Our results show that maternal methionine supplementation contributes to offspring development and performance in early stages and that, under conditions of heat stress during growth, chicks from methionine-supplemented hens respond better to hot environmental conditions than chicks from nonsupplemented hens. Supplementation of quail hens diets with methionine promoted activation of different metabolic pathways in offspring subjected to stress conditions.


The deficiency of nutrients such as methionine in the diet of birds is affecting fertility rate, egg production, egg weight, and progeny weight. In addition, the maternal environment influences gene expression through epigenetic mechanisms, where the conditions experienced by the parental generation during embryonic development can produce effects on the progeny. This study investigates how methionine supplementation in the diet of quail hens can reduce the effects of oxidative stress and improve the performance of progeny subjected to heat stress during growth. For that, the quail hens were fed with diets containing three different levels of methionine; and their chicks were created (15 on 35 d of age) into thermoneutral and/or intermittent heat stress ambient. It was observed that methionine supplementation in the quail hens had a positive effect on mortality during the initial phase and greater weight gain in the progeny growth phase. In addition, genetic inheritance was observed through the positive correlation between the expression of genes (maternal and progeny) related to oxidative stress. The results show that methionine supplementation in the maternal diet contributes to the development and performance of the progeny when subjected to heat stress during the growth phase.


Assuntos
Antioxidantes , Coturnix , Animais , Feminino , Antioxidantes/metabolismo , Coturnix/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Resposta ao Choque Térmico , Metionina/farmacologia , Metionina/metabolismo , Óvulo , Codorniz , Racemetionina/metabolismo , Aumento de Peso
2.
Front Physiol ; 12: 804678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002777

RESUMO

The frequency and severity of coral bleaching events have increased in recent years. Global warming and contamination are primarily responsible for triggering these responses in corals. Thus, the objective of this study was to evaluate the isolated and combined effects of elevated temperature and exposure to copper (Cu) on responses of the antioxidant defense system of coral Mussismilia harttii. In a marine mesocosm, fragments of the coral were exposed to three temperatures (25.0, 26.6, and 27.3°C) and three concentrations of Cu (2.9, 5.4, and 8.6 µg/L) for up to 12 days. Levels of reduced glutathione (GSH) and the activity of enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutamate cysteine ligase (GCL), were evaluated on the corals and symbionts. The short exposure to isolated and combined stressors caused a reduction in GSH levels and inhibition of the activity of antioxidant enzymes. After prolonged exposure, the combination of stressors continued to reduce GSH levels and SOD, CAT, and GCL activity in symbionts and GST activity in host corals. GCL activity was the parameter most affected by stressors, remaining inhibited after 12-days exposure. Interesting that long-term exposure to stressors stimulated antioxidant defense proteins in M. harttii, demonstrating a counteracting response that may beneficiate the oxidative state. These results, combined with other studies already published suggest that the antioxidant system should be further studied in order to understand the mechanisms of tolerance of South Atlantic reefs.

3.
Nutr Neurosci ; 21(10): 753-760, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28784045

RESUMO

OBJECTIVES: To evaluate how safflower oil (SFO) influences brain electrophysiology and cortical oxidative status in the offspring, mothers received a diet with SFO during brain development period. METHODS: Beginning on the 14th day of gestation and throughout lactation, rats received safflower (safflower group - SG) or soybean oil (control group - CG) in their diet. At 65 days old, cortical spreading depression (CSD) and cortex oxidative status were analyzed in the offspring. RESULTS: SG presented reduction of the CSD velocity as compared to the CG (SG: 3.24 ± 0.09; CG: 3.37 ± 0.07 mm/min). SFO reduced levels of lipid peroxidation by 39.4%. SG showed the following increases: glutathione-S-transferase, 40.8% and reduced glutathione, 34.3%. However, SFO decreased superoxide dismutase by 40.4% and catalase by 64.1%. To control for interhemispheric effects, since CSD was recorded only in the right cortex, we evaluated the oxidative status in both sides of the cortex; no differences were observed. DISCUSSION: Data show that when SFO is consumed by the female rats during pregnancy and lactation, the offspring present long-term effects on brain electrophysiology and cortical oxidative state. The present study highlights the relevance of understanding the SFO intake of pregnant and lactating mammals.


Assuntos
Encéfalo/efeitos dos fármacos , Carthamus tinctorius/química , Lactação , Óleo de Cártamo/farmacologia , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
4.
J Invertebr Pathol ; 130: 82-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26166809

RESUMO

Light and oxidant states affect the conidiation in diverse fungi, although the response has not been described when both stimuli are applied simultaneously. Conidial production and quality in Beauveria bassiana were analysed under four conditions for a wild-type (wt) strain and a previously isolated mutant (mt): normal atmosphere (21% O2; NA) or oxygen-enriched pulses (26% O2; OEP), with either light (L) or darkness (D). The response was complemented by following the expression of the bbrgs1 gene, encoding a regulator of the G-protein signal associated to conidia production. Conidiation was not significantly affected in the mutant strain by any condition (highest value with NA-L: 2.7×10(8)concm(-2)). Relative to maximal levels under NA (NA-D: 4×10(7)concm(2)), the wt strain diminished conidiation by 34-fold under OEP. The expression of bbrgs1 was higher (up to 188 times) in the mutant strain in every condition relative to the wt strain, in fact expression levels were consistent with the conidiation yields between strains. Viability and hydrophobicity were less affected by culture conditions, although pathogenicity parameters improved in conidia from OEP. The response to OEP, either with light or darkness, was strain-dependent for conidial production, viability, hydrophobicity and infectivity of conidia, then these parameters could be modulated in mass production processes.


Assuntos
Beauveria/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Esporos Fúngicos/fisiologia , Animais , Proteínas Fúngicas/biossíntese , Genes Fúngicos/fisiologia , Luz , Oxigênio/metabolismo , Reação em Cadeia da Polimerase
5.
Exp Mol Pathol ; 98(3): 549-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25870945

RESUMO

The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.


Assuntos
Artrite Experimental/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Animais , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA