Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23517, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38332883

RESUMO

In this work, the synthesis of BODIPY-phenyl-triazole labelled coumarins (BPhTCs) using a two-step approach is described. The influence of the BODIPY appending on the photophysical, electrochemical and thermal properties of the phenyl-triazole-coumarin precursors (PhTCs) was investigated. Band gap energies were measured by absorption spectroscopy (2.20 ± 0.02 eV in the solid and 2.35 ± 0.01 eV in solution) and cyclic voltammetry (2.10 ± 0.05 eV). The results are supported by DFT calculations confirming the presence of lowest LUMO levels that facilitate the electron injection and stabilize the electron transport. Their charge-transport parameters were measured in Organic Field-Effect Transistor (OFET) devices. BPhTCs showed an ambipolar transistor behavior with good n-type charge mobilities (10-2 cm2V-1s-1) allowing these derivatives to be employed as promising semiconducting crystalline and fluorescent materials with good thermal and air stability up to 250 °C.

2.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375044

RESUMO

Organic thin-film transistors (OTFTs) are miniaturized devices based upon the electronic responses of organic semiconductors. In comparison to their conventional inorganic counterparts, organic semiconductors are cheaper, can undergo reversible doping processes and may have electronic properties chiefly modulated by molecular engineering approaches. More recently, OTFTs have been designed as gas sensor devices, displaying remarkable performance for the detection of important target analytes, such as ammonia, nitrogen dioxide, hydrogen sulfide and volatile organic compounds (VOCs). The present manuscript provides a comprehensive review on the working principle of OTFTs for gas sensing, with concise descriptions of devices' architectures and parameter extraction based upon a constant charge carrier mobility model. Then, it moves on with methods of device fabrication and physicochemical descriptions of the main organic semiconductors recently applied to gas sensors (i.e., since 2015 but emphasizing even more recent results). Finally, it describes the achievements of OTFTs in the detection of important gas pollutants alongside an outlook toward the future of this exciting technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA