Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776004

RESUMO

The red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is one of the most harmful pests for palm trees, causing serious economic damage worldwide. The present work aims to model and study the 3D structures of highly expressed odorant binding proteins from R. ferrugineus (RferOBPs) and identify possible binding modes and ligand release mechanism by docking and molecular dynamics. Highly confident 3D structures of a total of 11 odorant binding proteins (OBPs) were obtained with AlphaFold2. All 3D RferOBPs modeled structures displayed six characteristic α-helices, except for RfeOBP7 and RfeOBP10, which had an extra terminal α-helix. Among the eleven modeled RferOBPs, RferOBP4 was highly expressed in the antennae and subsequently selected for further analyses. Molecular docking analyses demonstrated that ferruginol, α-pinene, DEET, and picaridin can favorably bind the RferOBP4 cavity with low affinity energies. Molecular dynamic simulations of RferOBP4 bound to ferruginol at different pH values showed that low pH environments dictate a structural change into an apo-state that modifies the number of tunnels where the ligand can coexist, further triggering ligand release by a pH-dependent mechanism. This is the first report concerning the modelling and study of ligand binding modes and release mechanism of R. ferrugineus OBPs.Communicated by Ramaswamy H. Sarma.

2.
Gene ; 850: 146917, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36174905

RESUMO

Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growth and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.


Assuntos
Besouros , Ferrovias , Animais , Feminino , Filogenia , Elementos de DNA Transponíveis , Odorantes , Besouros/genética , Besouros/metabolismo , Luciferases/metabolismo , Morfogênese , Feromônios
3.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296371

RESUMO

The Aedes aegypti mosquito is the main hematophagous vector responsible for arbovirus transmission in Brazil. The disruption of A. aegypti hematophagy remains one of the most efficient and least toxic methods against these diseases and, therefore, efforts in the research of new chemical entities with repellent activity have advanced due to the elucidation of the functionality of the olfactory receptors and the behavior of mosquitoes. With the growing interest of the pharmaceutical and cosmetic industries in the development of chemical entities with repellent activity, computational studies (e.g., virtual screening and molecular modeling) are a way to prioritize potential modulators with stereoelectronic characteristics (e.g., pharmacophore models) and binding affinity to the AaegOBP1 binding site (e.g., molecular docking) at a lower computational cost. Thus, pharmacophore- and docking-based virtual screening was employed to prioritize compounds from Sigma-Aldrich® (n = 126,851) and biogenic databases (n = 8766). In addition, molecular dynamics (MD) was performed to prioritize the most potential potent compounds compared to DEET according to free binding energy calculations. Two compounds showed adequate stereoelectronic requirements (QFIT > 81.53), AaegOBP1 binding site score (Score > 42.0), volatility and non-toxic properties and better binding free energy value (∆G < −24.13 kcal/mol) compared to DEET ((N,N-diethyl-meta-toluamide)) (∆G = −24.13 kcal/mol).


Assuntos
Aedes , Repelentes de Insetos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , DEET/química , Simulação de Acoplamento Molecular , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Preparações Farmacêuticas/metabolismo
4.
J Biomol Struct Dyn ; 40(1): 117-129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815781

RESUMO

Arboviruses are a group of viruses (e.g. Dengue, Chikungunya and Yellow fever virus) that are transmitted by arthropod vectors, which Aedes aegipty is the vector of main viruses in Americas. This vector is responsible to 2.4 millions of arboviruses cases in Brazil with less than a thousand deaths annually. Despite of epidemiological data, arboviruses treatment is symptomatic and the vaccine control is not effective, which makes the vector control against A. aegipty a promising strategy to diseases control. One way to achieve this goal is to development of A. aegipty sensitive olfactory modulators. Odorant binding protein 1 from A. aegypti (AaegOBP1) is essential in sensory communication, and is the first filter in odorant selection, which makes this target promising to development of new repellents. For this reason, hierarchical virtual screening (ligand-based pharmacophore model and molecular docking) together volatility filter was applied at Sigma-Aldrich database (n = 126.851) to prioritize potential molecules to repellency assays. Three compounds showed adequate stereo-electronic requirements (QFIT> 81.53), score to AaegOBP1 binding site (Score > 36.0) and volatile properties and it was chosen for repellency assays. ZINC00170981 and ZINC00131924 showed a dose-response behavior, while ZINC01621824 did not showed activity in repellency assays. Finally, Molecular Dynamics (MD) was employed to hypothesize the stability of protein-ligand complexes. According to RMSD, RMSF and binding free energy data, ZINC00170981 and ZINC00131924 were able to stabilize AaegOBP1 binding-site during the trajectory by interactions with key residues such as His77, Leu89 and Trp114). Communicated by Ramaswamy H. Sarma.


Assuntos
Aedes , Animais , Bioensaio , Ligantes , Simulação de Acoplamento Molecular , Mosquitos Vetores , Receptores Odorantes
5.
Appl Microbiol Biotechnol ; 104(20): 8631-8648, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32888038

RESUMO

Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.


Assuntos
Odorantes , Receptores Odorantes , Animais , Proteínas de Transporte , Proteínas de Insetos/genética , Insetos/metabolismo , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
6.
J Med Entomol ; 57(2): 463-476, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670811

RESUMO

Skin irritation has been reported to be the main adverse effect of excessive use of N,N-diethyl-m-toluamide (DEET) and ethyl 3-acetyl(butyl)amino (IR3535) commercial repellents. Therefore, there is an interest in alternatives of natural origin such as essential oils (EOs) and major compounds, which have repellent effects but have no contraindications. The main purpose of the present study was to identify the repellent effect of selected terpenes on Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) by in silico analysis based on their affinity with the odorant protein AaegOBP1. The protein-metabolite interactions in 20 terpenes were analyzed using the SwissDock tool. Terpenes presenting the highest affinity compared with commercial repellents were selected to evaluate repellent activity at concentrations 0.1, 10, and 25% against Ae. aegypti. Different periods (0-2, 2-15, 15-60 min) were evaluated with DEET as a positive control. The toxicity of terpenes was verified through Osiris and Molinspiration Cheminformatics Software, and cytotoxicity assays in Vero and HepaRG cells were performed using the MTT method. Two formulations were prepared with polyethylene glycol to evaluate skin long-lasting in vivo assay. The results showed four terpenes: geranyl acetate, nerolidol, α-bisabolol, and nerol, with affinity to AaegOBP1 comparable with DEET and IR3535. Geranyl acetate, nerolidol, and their mixtures showed no cytotoxicity and protection percentages close to 100% during the test at concentrations 10 and 25%. Long-lasting assays with geranyl acetate and nerolidol formulate showed 3 h as maximum protection time with 100% protection percentage. These metabolites and their mixtures are candidates to repellent formulations with times and protection percentages similar to DEET.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Repelentes de Insetos/química , Receptores Odorantes/metabolismo , Aedes/metabolismo , Animais , Simulação por Computador , Desenho de Fármacos , Feminino , Repelentes de Insetos/farmacologia
7.
Arch Insect Biochem Physiol ; 101(3): e21557, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31062883

RESUMO

The European grapevine moth, Lobesia botrana (Denis & Schiffermüller), is a serious pest in vineyards in North and South America. Mating disruption techniques have been used to control and monitor L. botrana on the basis of its sexual communication. This needs a well-tuned olfactory system, in which it is believed that pheromone-binding proteins (PBPs) are key players that transport pheromones in the antennae of moths. In this study, the selectivity of a PBP, named as LbotPBP1, was tested by fluorescence binding assays against 11 sex pheromone components and 6 host plant volatiles. In addition, its binding mechanism was predicted on the basis of structural analyses by molecular docking and complex and steered molecular dynamics (SMD). Our results indicate that LbotPBP1 binds selectively to sex pheromone components over certain host plant volatiles, according to both in vitro and in silico tests. Thus, chain length (14 carbon atoms) and functional groups (i.e., alcohol and ester) appear to be key features for stable binding. Likewise, residues such as Phe12, Phe36, and Phe118 could participate in unspecific binding processes, whilst Ser9, Ser56, and Trp114 could participate in the specific recognition and stabilization of sex pheromones instead of host plant volatiles. Moreover, our SMD approach supported 11-dodecenyl acetate as the best ligand for LbotPBP1. Overall, the dynamics simulations, contact frequency analysis and SMD shed light on the binding mechanism of LbotPBP1 and could overcome the imprecision of molecular docking, supporting the in vitro binding assays. Finally, the role of LbotPBP1 in the chemical ecology of L. botrana is discussed.


Assuntos
Proteínas de Transporte/genética , Proteínas de Insetos/genética , Mariposas/genética , Atrativos Sexuais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Ligação Proteica
8.
J Insect Physiol ; 95: 51-65, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27639942

RESUMO

Detection of chemical signals from the environment through olfaction is an indispensable mechanism for maintaining an insect's life, evoking critical behavioral responses. Among several proteins involved in the olfactory perception process, the odorant binding protein (OBP) has been shown to be essential for a normally functioning olfactory system. This paper discusses the role of OBPs in insect chemoreception. Here, structural aspects, mechanisms of action and binding affinity of such proteins are reviewed, as well as their promising application as molecular targets for the development of new strategies for insect population management and other technological purposes.


Assuntos
Quimiotaxia , Proteínas de Insetos/genética , Insetos/fisiologia , Percepção Olfatória , Receptores Odorantes/genética , Animais , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA