Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299949

RESUMO

In this paper, a robust nonlinear approach for control of liquid levels in a quadruple tank system (QTS) is developed based on the design of an integrator backstepping super-twisting controller, which implements a multivariable sliding surface, where the error trajectories converge to the origin at any operating point of the system. Since the backstepping algorithm is dependent on the derivatives of the state variables, and it is sensitive to measurement noise, integral transformations of the backstepping virtual controls are performed via the modulating functions technique, rendering the algorithm derivative-free and immune to noise. The simulations based on the dynamics of the QTS located at the Advanced Control Systems Laboratory of the Pontificia Universidad Católica del Perú (PUCP) showed a good performance of the designed controller and therefore the robustness of the proposed approach.


Assuntos
Algoritmos , Laboratórios
2.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146425

RESUMO

Distributed power generation, micro-grids, and networks working in islanding mode have strong deviations in voltage quantities. These deviations can be divided into amplitude and frequency. Amplitude deviations are well-known and studied, as they are common in small and big grids. However, deviations on the ac mains frequency have not been widely studied. The literature shows control schemes capable of bearing these variations, but no systematic analysis has been performed to ensure stability. As the majority of power converters are designed for big grids, their analysis and design neglect frequency disturbances, therefore those devices allow a very small frequency operating window. For instance, in power converters that need to be synchronized to the grid, the standard deviation does not go beyond 0.5 Hz, and for grid-tied inverters it does not go beyond 1 Hz, whereas variations of around 8 Hz can be expected in micro-grids. This work presents a comprehensive analysis of the control system's stability, where two different control schemes for a back-to-back static converter topology are implemented and studied under a wide variable grid frequency. Because the behavior of power converters is nonlinear and coupled, dynamic and static decouplers are usually introduced in the controller, being a key element on the scheme according to the findings. The results show that using just a static decoupler does not guarantee stability under frequency variations; meanwhile, when a dynamic decoupler is used, the operating window can be greatly extended. The procedure shown in this paper can also be extended to other control algorithms, making it possible to carefully choose the control system for a variable frequency condition. Simulated and experimental results confirm the theoretical approach.

3.
Sensors (Basel) ; 22(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684722

RESUMO

The use of controlled power converters has been extended for high power applications, stacking off-the-shelve semiconductors, and allowing the implementation of, among others, AC drives for medium voltages of 2.3 kV to 13.8 kV. For AC drives based on power cells assembled with three-phase diode rectifiers and cascaded H-bridge inverters, a sophisticated input multipulse transformer is required to reduce the grid voltage, provide isolation among the power cells, and compensate for low-frequency current harmonics generated by the diode-based rectifiers. However, this input multipulse transformer is bulky, heavy, and expensive and must be designed according to the number of power cells, not allowing total modularity of the AC drives based on cascade H-bridges. This study proposes and evaluates a control strategy based on a finite control set-model predictive control that emulates the harmonic cancellation performed by an input multipulse transformer in a cascade H-bridge topology. Hence, the proposed method requires conventional input transformers and replaces the three-phase diode rectifiers. As a result, greater modularity than the conventional multicell converter and improved AC overall input current with a THD as low as 2% with a unitary displacement power factor are achieved. In this case, each power cell manages its own DC voltage using a nonlinear control strategy, ensuring stable system operation for passive and regenerative loads. The experimental tests demonstrated the correct performance of the proposed scheme.

4.
ISA Trans ; 126: 545-561, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34462136

RESUMO

Autonomous Robots with multiple directional thrusters are normally over-actuated systems that require nonlinear control allocation methods to map the forces that drive the robot's dynamics and act as virtual control variables to the actuators. This process demands computational efforts that, sometimes, are not available in small robotic platforms. The present paper introduces a new control allocation approach with fast convergence, high accuracy, and dealing with complex nonlinear problems, especially in embedded systems. The adopted approach divides the desired nonlinear system into coupled linear problems. For that purpose, the Real Actions (RAs) and Virtual Control Variables (VCVs) are broke in two or more sets each. While the RA subsets are designed to linearize the system according to different input subspaces, the VCV is designed to be partially coupled to overlap the output subspaces. This approach generates smaller linear systems with fast and robust convergence used sequentially to solve nonlinear allocation problems. This methodology is assessed in mathematical tutorial cases and over-actuated UAV simulations.

5.
Micromachines (Basel) ; 12(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066329

RESUMO

The operation of Boost converters in discontinuous conduction mode (DCM) is suitable for many applications due to the, among other advantages, inductor volume reduction, high efficiency, paralleling, and low cost. Uses in biomedicine, nano/microelectromechanical, and higher power systems, where wide ranges of input/output voltage and a constant power load (CPL) can coexist, are well-known examples. Under extremely wide operating ranges, it is not difficult to change to a continuous conduction mode (CCM) operation, and instability, chaos, or bifurcations phenomena can occur regardless of the conduction mode. Unfortunately, existing control strategies consider a single conduction mode or linearized models because only slight resistive/CPL power level or input/output voltage variations (and no conduction mode changes) were expected. In this paper, new mathematical models for the Boost converter (with resistive or CPL) that are conduction mode independent are presented and validated. Since the open-loop dynamics of the proposed CPL model is unstable, a nonlinear control law capable of stabilizing the boost converter regardless of the conduction mode is proposed. A stability analysis based on a common-Lyapunov function is provided, and numerical and experimental tests are presented to show the proposal's effectiveness.

6.
Bull Math Biol ; 82(8): 110, 2020 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772190

RESUMO

We consider a minimalist model for the Sterile Insect Technique (SIT), assuming that residual fertility can occur in the sterile male population. Taking into account that we are able to get regular measurements from the biological system along the control duration, such as the size of the wild insect population, we study different control strategies that involve either continuous or periodic impulsive releases. We show that a combination of open-loop control with constant large releases and closed-loop nonlinear control, i.e., when releases are adjusted according to the wild population size estimates, leads to the best strategy in terms of both number of releases and total quantity of sterile males to be released. Last but not least, we show that SIT can be successful only if the residual fertility is less than a threshold value that depends on the wild population biological parameters. However, even for small values, the residual fertility induces the use of such large releases that SIT alone is not always reasonable from a practical point of view and thus requires to be combined with other control tools. We provide applications against a mosquito species, Aedes albopictus, and a fruit fly, Bactrocera dorsalis, and discuss the possibility of using SIT when residual fertility among the sterile males, can occur.


Assuntos
Modelos Biológicos , Mosquitos Vetores , Controle Biológico de Vetores , Aedes/fisiologia , Animais , Fertilidade , Insetos , Masculino , Conceitos Matemáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA