Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38936832

RESUMO

d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses. ONE-SENTENCE SUMMARY: This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.


Assuntos
Etanol , Fermentação , Oxigênio , Xilose , Xilose/metabolismo , Etanol/metabolismo , Oxigênio/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Cinética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Aerobiose
2.
World J Microbiol Biotechnol ; 37(1): 6, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33392812

RESUMO

The use of non-conventional yeast species to obtain interesting flavors and aromas has become a new trend in the fermented beverages industry. Among such species, Brettanomyces bruxellensis (B. bruxellensis) has been reported as capable of producing desirable or at least singular aromas in fermented beverages like beer and wine. However, this yeast can also produce an aromatic defect by producing high concentrations of phenolic compounds like, 4-ethylguaiacol and particularly 4-ethylphenol (4-EP). In the present study, we designed a mutant screening method to isolate B. bruxellensis mutants with reduced 4-EP production. More than 1000 mutants were screened with our olfactory screening method, and after further sensory and chemical analysis we were able to select a B. bruxellensis mutant strain with a significant reduction of 4-EP production (more than threefold) and less phenolic perception. Notably, the selected strain also showed higher diversity and concentration of ethyl esters, the most important group of odor active compounds produced by yeasts. Based on these results, we consider that our selected mutant strain is a good candidate to be tested as a non-conventional yeast starter (pure or in co-inoculation) to obtain wines and beers with novel aromatic properties.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , Mutagênese , Fenóis/metabolismo , Cerveja/análise , Fermentação , Microbiologia de Alimentos , Odorantes/análise , Paladar , Compostos Orgânicos Voláteis/análise , Vinho/análise
3.
Int J Food Microbiol ; 337: 108953, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33161347

RESUMO

Recently, the increase in microbreweries and the consequent production of craft beers have reached exponential growth. The interest in non-conventional yeasts for innovation and a unique selling feature in beer fermentation is increasing. This work studied the autochthonous Saccharomyces and non-Saccharomyces yeasts, isolated from various food sources, with the ability to modify and improve the fermentative and aromatic profiles during alcoholic fermentation. The ability to ferment maltose and produce desirable aroma compounds were considered as the key characters for the screening selection. A synthetic beer wort was developed for this purpose, to simulate beer wort composition. A total of forty-seven yeast strains belonging to different genera were analysed according to their fermentation profile, volatile compounds production and sensory analysis. Three native strains of Saccharomyces cerevisiae, Zygoascus meyerae and Pichia anomala were selected to evaluate their aromatic profile in single and mixed fermentations. The strains produced 4-vinylguaiacol, ß-phenylethyl alcohol, and isoamyl alcohol at levels significantly above the sensory threshold, making them interesting for wheat and blond craft beer styles. The native Hanseniaspora vineae was also included in a co-fermentation treatment, resulting in a promising yeast to produce fruity beers.


Assuntos
Cerveja/análise , Cerveja/microbiologia , Odorantes/análise , Leveduras/metabolismo , Fermentação , Microbiologia de Alimentos , Saccharomyces/classificação , Saccharomyces/metabolismo , Paladar , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Leveduras/classificação , Leveduras/isolamento & purificação
4.
Microorganisms ; 8(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599933

RESUMO

Autochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typical Vitis vinifera L. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly, Saccharomyces represented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution of S. uvarum (42.7%) and S. cerevisiae (80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, only Metschnikowia pulcherrima could co-exist with a commercial Saccharomyces cerevisiae strain under fermentative conditions, representing a feasible candidate strain for wine production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA