Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Assist Technol ; : 1-10, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324974

RESUMO

The paper describes the development of an open-source, low-cost, wearable hand myoelectrical orthosis (neuro-orthosis) device for people with hand disabilities. The device uses functional electrical stimulation (FES) driven by myoelectrical signals (MES) to assist hand movements, enabling users to perform daily activities with greater ease and independence. The device comprises a forearm-wearable device developed using the 3D additive manufacturing principle, allowing user customization. Fixed non-disposable electrodes are attached to the myoelectrical orthosis, aiding the correct positioning for the user. The whole control system is stand-alone, and parameters can be controlled by Bluetooth communication, making the device wireless. The paper describes the MES-FES device's design, development, and testing, including its technical specifications, usability, and effectiveness. The open-source project aims to provide an accessible and affordable solution for people with spinal cord lesions while contributing to the growing research on noninvasive muscle-machine interfaces.

2.
Front Neurosci ; 15: 702781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126033

RESUMO

Non-invasive Functional Electrical Stimulation (FES) is a technique applied for motor rehabilitation of patients with central nervous system injury. This technique requires programmable multichannel systems to configure the stimulation parameters (amplitude, frequency, and pulse width). Most FES systems are based on microcontrollers with fixed architecture; this limits the control of the parameters and the scaling to multiple channels. Although field programmable gate arrays (FPGA) have been used in FES systems as alternative to microcontrollers, most of them focus on signal acquisition, processing, or communication functions, or are for invasive stimulation. A few FES systems report using FPGAs for parameter configuration and pulse generation in non-invasive FES. However, generally they limit the value of the frequency or amplitude parameters to enable multichannel operation. This restricts free selection of parameters and implementation of modulation patterns, previously reported to delay FES-induced muscle fatigue. To overcome those limitations, this paper presents a proof-of-concept (technology readiness level three-TRL 3) regarding the technical feasibility and potential use of an FPGA-based pulse generator for non-invasive FES applications (PG-nFES). The main aims were: (1) the development of a flexible pulse generator for FES applications and (2) to perform a proof-of-concept of the system, comprising: electrical characterization of the stimulation parameters, and verification of its potential for upper limb FES applications. Biphasic stimulation pulses with high linearity (r 2 > 0.9998) and repeatability (>0.81) were achieved by combining the PG-nFES with a current-controlled output stage. Average percentage error in the characterizations was under 3% for amplitude (1-48 mA) and pulse width (20-400 µs), and 0% for frequency (10-150 Hz). A six-channel version of the PG-nFES was implemented to demonstrate the scalability feature. The independence of parameters was tested with three patterns of co-modulation of two parameters. Moreover, two complete FES channels were implemented and the claimed features of the PG-nFES were verified by performing upper limb functional movements involving the hand and the arm. Finally, the system enabled implementation of a stimulation pattern with co-modulation of frequency and pulse width, applied successfully for efficient elbow during repetitions of a functional movement.

3.
Artif Organs ; 44(3): 305-313, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31553061

RESUMO

The use of neuromuscular electrical stimulation (NMES) to artificially restore movement in people with complete spinal cord injury (SCI) induces an accelerated process of muscle fatigue. Fatigue increases the time between the beginning of NMES and the onset of muscle force (DelayTOT ). Understanding how much muscle fatigue affects the DelayTOT in people with SCI could help in the design of closed-loop neuroprostheses that compensate for this delay, thus making the control system more stable. The aim of this study was to evaluate the impact of the extent of fatigue on DelayTOT and peak force of the lower limbs in people with complete SCI. Fifteen men-young adults with complete SCI (paraplegia and tetraplegia) and stable health-participated in the experiment. DelayTOT was defined as the time interval between the beginning of NMES application until the onset of muscle force. The electrical intensity of NMES applied was adjusted individually and consisted of the amplitude required to obtain a full extension of the knee (0°), considering the maximum electrically stimulated extension (MESE). Subsequently, 70% of the MESE was applied during the fatigue induction protocol. Significant differences were identified between the moments before and after the fatigue protocol, both for peak force (P ≤ .026) and DelayTOT (P ≤ .001). The medians and interquartile range of the DelayTOT were higher in postfatigue (199.0 ms) when compared to the moment before fatigue (146.5 ms). The medians and interquartile range of the peak force were higher in unfatigued lower limbs (0.43 kgf) when compared to the moment postfatigue (0.27 kgf). The results support the hypothesis that muscle fatigue influences the increase in DelayTOT and decrease in force production in people with SCI. For future applications, the combined evaluation of the delay and force in SCI patients provides valuable feedback for NMES paradigms. The study will provide potentially critical muscle mechanical evidence for the investigation of the evolution of atrophy.


Assuntos
Fadiga Muscular , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Estimulação Elétrica , Terapia por Estimulação Elétrica , Humanos , Masculino , Contração Muscular , Traumatismos da Medula Espinal/terapia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA