Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. invest. clín ; Rev. invest. clín;73(1): 17-22, Jan.-Feb. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1289740

RESUMO

ABSTRACT Background: Decreased levels of repressor element-1 silencing transcription (REST) factor in the brain, plasma, and neuron-derived exosomes are associated with Alzheimer’s disease (AD). Objective: The objective of the study was to test the viability of serum REST as a possible blood-based biomarker for AD, comparing serum REST levels in AD patients from a National Institute of Health in Mexico City (with different levels of severity and comorbidities), with elderly controls (EC) and young controls (YC). Methods: We used an enzyme-linked immunosorbent assay to determine serum REST levels in AD patients (n = 28), EC (n = 19), and YC (n = 24); the AD patients were classified by dementia severity and comorbidities (depression and microangiopathy) using clinimetric tests and magnetic resonance imaging. Results: Mean serum REST levels did not differ between AD patients, EC, and YC. The severity of AD and the presence of depression or microangiopathy were not associated with serum REST levels. Conclusion: Our results differ from previously published patterns found for plasma and cerebral REST levels. Free serum REST levels may not be a viable AD blood-based biomarker. (REV INVEST CLIN. 2021;73(1):17-22)


Assuntos
Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Proteínas Repressoras/sangue , Doença de Alzheimer/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Fatores Etários , México
2.
Genet Mol Biol ; 36(1): 28-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23569405

RESUMO

Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer's Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA