RESUMO
Dedicated nectarivory is a derived feeding habit that requires specialized cranial and soft-tissue morphologies to extract nectar from flowers. Nectarivory has evolved many times in terrestrial vertebrates, and in four bat families (Pteropodidae, Phyllostomidae, Vespertilionidae, and Mystacinidae). Within phyllostomids, specializations to nectarivory have been well documented in two subfamilies, Glossophaginae and Lonchophyllinae. However, nectarivory has also evolved independently in the genus Phyllostomus (subfamily Phyllostominae). Since Phyllostomus species have an omnivorous diet with a high consumption of nectar, they can be used to explore the basic morphological modifications linked to evolving a nectarivorous habit. Here, we focused on describing and comparing the morphological features potentially associated with nectarivory in Phyllostomus discolor. We present the first detailed tongue and palate morphological descriptions for P. discolor and perform skull morphometric analysis including 10 species. We found hair-like papillae on the tongue of P. discolor, a convergent feature with Glossophaginae and nectarivorous Pteropodids; these papillae likely confer an advantage when feeding on nectar. P. discolor does not show skull morphological features characteristic of nectarivorous bats, such as a long and narrow snout. We pose that the consumption of a variety of food, such as hard insects and fruits, and the large size of P. discolor relative to specialized nectarivores may create trade-offs against morphological specialization of the skull towards nectarivory. In contrast, a long and mobile tongue with hair-like papillae may be an evolutionary solution for nectar extraction that does not have a major impact on this species' ability to feed on other resources.
Assuntos
Quirópteros , Humanos , Animais , Quirópteros/anatomia & histologia , Néctar de Plantas , Evolução Biológica , Dieta , CrânioRESUMO
Data papers and open databases have revolutionized contemporary science, as they provide the long-needed incentive to collaborate in large international teams and make natural history information widely available. Nevertheless, most data papers have focused on species occurrence or abundance, whereas interactions have received much less attention. To help fill this gap, we have compiled a georeferenced data set of interactions between 93 bat species of the family Phyllostomidae (Chiroptera) and 501 plant species of 68 families. Data came from 169 studies published between 1957 and 2007 covering the entire Neotropical Region, with most records from Brazil (34.5% of all study sites), Costa Rica (16%), and Mexico (14%). Our data set includes 2571 records of frugivory (75.1% of all records) and nectarivory (24.9%). The best represented bat genera are Artibeus (28% of all records), Carollia (24%), Sturnira (10.1%), and Glossophaga (8.8%). Carollia perspicillata (187), Artibeus lituratus (125), Artibeus jamaicensis (94), Glossophaga soricina (86), and Artibeus planirostris (74) were the bat species with the broadest diets recorded based on the number of plant species. Among the plants, the best represented families were Moraceae (17%), Piperaceae (15.4%), Urticaceae (9.2%), and Solanaceae (9%). Plants of the genera Cecropia (46), Ficus (42), Piper (40), Solanum (31), and Vismia (27) exhibited the largest number of interactions. These data are stored as arrays (records, sites, and studies) organized by logical keys and rich metadata, which helped to compile the information on different ecological and geographic scales, according to how they should be used. Our data set on bat-plant interactions is by far the most extensive, both in geographic and taxonomic terms, and includes abiotic information of study sites, as well as ecological information of plants and bats. It has already facilitated several studies and we hope it will stimulate novel analyses and syntheses, in addition to pointing out important gaps in knowledge. Data are provided under the Creative Commons Attribution 4.0 International License. Please cite this paper when the data are used in any kind of publication related to research, outreach, and teaching activities.
Assuntos
Quirópteros , Ficus , Piper , Animais , Brasil , Costa Rica , HumanosRESUMO
Bats play crucial ecosystem services as seed dispersers, pollinators, controllers of insects, and nutrient recyclers. However, there has not been a thorough global review evaluating these roles in bats across all biogeographical regions of the world. We reviewed the literature published during the last two decades and identified 283 relevant studies: 78 dealt with the control of potential insect pests by bats, 80 related to the suppression of other arthropods, 60 on the dispersal of native or endemic seeds, 11 dealt with the dispersal of seeds of introduced plants, 29 on the pollination of native or endemic plants, 1 study on pollination of introduced plants, and 24 on the use of guano as fertilizer. Our literature search showed that queries combining the terms "seed dispersal," "insectivorous bats," "nectarivorous bats," "use of guano," and "ecosystem services" returned 577 studies, but half were experimental in nature. We found that the evaluation of ecosystem services by bats has been mostly conducted in the Neotropical and Palearctic regions. To detect differences across relevant studies, and to explain trends in the study of ecosystem services provided by bats, we performed generalized linear mixed models (GLMM) fitted with a Poisson distribution to analyze potential differences among sampling methods. We identified 409 bat species that provide ecosystem services, 752 insect species consumed by bats and 549 plant species either dispersed or pollinated by bats. Our review summarizes the importance of conserving bat populations and the ecological services they provide, which is especially important during the current pandemic.
Assuntos
Quirópteros , Ecossistema , Animais , Insetos , PolinizaçãoRESUMO
The genus Agave sensu lato contains ca. 211 described species, many of which are considered keystone species because of their ecological dominance and the quantity of resources they provide with their massive, nectar-rich inflorescences. The large diversity of Agave species has been hypothesized as being related to their reproductive strategy (predominantly monocarpic) and diverse pollinators (e.g., bats, hummingbirds, hawkmoths). In particular, Agave species provide resources that a few genera of nectar feeding bats from the subfamily Glosophaginae are dependent upon. To explore a possible coevolutionary relationship between Agave and the bat species that pollinate them, we calibrated molecular phylogenies of both groups and looked for a correlation in their dates of divergence. One coding and two non-coding regions of the chloroplast genome were sequenced from 49 species of the Agavoideae (Asparagaceae), and the mitochondrial gene Cyt-b and nuclear coding gene RAG2 were either sequenced or obtained from gene bank for 120 Phyllostomid bats. Results from the analyses indicate that Agave sensu lato is a young genus (estimated crown age 2.7-8.5/stem age 4.6-12.3â¯Ma), with an increasing diversification rate, and the highest speciation rate among Agavoideae's clades. The origin of the Glossophaginae bats (stem age 20.3-23.5â¯Ma) occurred prior to the stem age of Agave sensu lato, while the origin of the current pollinators of Agave species, members of the genera Glossophaga, Leptonycteris, Anoura, Choeronyscus, Musonycteris and Choeronycteris, was estimated to be around 6.3-16.2â¯Ma, overlapping with the stem age of Agave sensu lato, supporting the hypothesis of diffuse coevolution.