Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000613

RESUMO

Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers.

2.
Polymers (Basel) ; 16(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732761

RESUMO

This paper presents a comprehensive review of natural fiber-reinforced composites (NFRCs) for lower-limb prosthetic designs. It covers the characteristics, types, and properties of natural fiber-reinforced composites as well as their advantages and drawbacks in prosthetic designs. This review also discusses successful prosthetic designs that incorporate NFRCs and the factors that make them effective. Additionally, this study explores the use of computational biomechanical models to evaluate the effectiveness of prosthetic devices and the key factors that are considered. Overall, this document provides a valuable resource for anyone interested in using NFRCs for lower-limb prosthetic designs.

3.
Sci Rep ; 14(1): 8648, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622156

RESUMO

Geotextiles made from plant fibers creates a suitable environment for plant growth as part of soil bioengineering techniques. The faster decomposition of plant fiber geotextiles compared to synthetic ones demands the use of composites that enhance their waterproofing and extend their durability in the environment. The objective of this work was to evaluate the resistance of a geotextile made with Thypha domingensis to degradation caused by climatic variables. Tensile strength tests were conducted in the laboratory in order to evaluate the degradation of geotextiles treated with single and double layers of waterproofing resin. Based on Scanning Electron Microscopy (SEM) images, it was verified that applying double layer of waterproofing resin delays the fibers degradation up to 120 days of exposure to the effects of climatic variables other than temperature. The maximum resistance losses due to the geotextile's exposure to degradation were statistically significant for all three treatments: control-without waterproofing resin, with one layer resin, and with two layers resin. Therefore, waterproofing resin, provides a long-term protective solution for geotextiles made from cattail fibers.


Assuntos
Typhaceae , Resistência à Tração , Estruturas Vegetais
4.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399068

RESUMO

One crucial property of concrete, particularly in construction, is its thermal conductivity, which impacts heat transfer through conduction. For example, reducing the thermal conductivity of concrete can lead to energy savings in buildings. Various techniques exist for measuring the thermal conductivity of materials, but there is limited discussion in the literature about suitable methods for concrete. In this study, the transient line source method is employed to evaluate the thermal conductivity of concrete samples with natural and synthetic fibers after 7 and 28 days of curing. The results indicate that concrete with hemp fiber generally exhibits higher thermal conductivity values, increasing by 48% after 28 days of curing, while synthetic fibers have a minimal effect. In conclusion, this research opens the door to using natural alternatives like hemp fiber to improve concrete's thermal properties, providing alternatives for thermo-active foundations and geothermal energy piles which require high thermal conductivities.

5.
Polymers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006072

RESUMO

Cashew nutshells from the northern region of Colombia were prepared to assess their potential use as a filler in polymer matrix filaments for 3D printing. After drying and grinding processes, cashew nutshells were characterized using scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared (ATR-FTIR), and thermogravimetric analyses (TGA). Three different filaments were fabricated from polylactic acid pellets and cashew nutshell particles at 0.5, 1.0, and 2.0 weight percentages using a single-screw extruder. Subsequently, single-filament tensile tests were carried out on them. SEM images showed rough and porous particles composed of an arrangement of cellulose microfibrils embedded in a hemicellulose and lignin matrix, the typical microstructure reported for natural fibers. These characteristics observed in the particles are favorable for improving filler-matrix adhesion in polymer matrix composites. In addition, their low density of 0.337 g/cm3 makes them attractive for lightweight applications. ATR-FTIR spectra exhibited specific functional groups attributed to hemicellulose, cellulose, and lignin, as well as a possible transformation to crystalline cellulose during drying treatment. According to TGA analyses, the thermal stability of cashew nutshell particles is around 320 °C. The three polylactic acid-cashew nutshell particle filaments prepared in this work showed higher tensile strength and elongation at break when compared to polylactic acid filament. The characteristics displayed by these cashew nutshell particles make them a promising filler for 3D printing filaments.

6.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765536

RESUMO

The development of wind turbines for regions with low wind speeds imposes a challenge to the expansion of the corresponding energy generation capacity. The present work consists of an evaluation of the potential carded jute fiber and jute yarn to be used in the construction of a wind blade for regions of low wind intensity. The fibers used were supplied by Company Textile of Castanhal (Castanhal-Para-Brazil) and used in the study without chemical treatment in the form of single-filament fibers and yarns with a surface twist of 18.5°. The composites were produced through the resin infusion technique and underwent tensile and shear tests using 120-Ohm strain gauges and a blade extensometer to obtain the Young's modulus. In the analysis of the results, the ANOVA test was applied with a 0.05 significance level, followed by Tukey's test. The results showed that long, aligned jute fibers can be a good option for laminated structures applied in composites for small wind turbine blades.

7.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765616

RESUMO

The main modifications of thermal and colorimetric parameters after thermal aging of DGEBA/TETA system (plain epoxy) and fique-fiber woven fabric-reinforced epoxy composites are described. As a preliminary study, thermal analysis was carried out on epoxy matrix composites reinforced with 15, 30, 40 and 50% fique-fiber woven fabric. After this previous analysis, the 40% composite was chosen to be thermally aged, at 170 °C. Three exposure times were considered, namely, 0, 72, 120 and 240 h. Samples were studied by thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and colorimetry analysis. Significant color changes were observed after thermal aging combined with oxidation. It was also found that the thermal behavior of the plain epoxy showed greater resistance after thermal exposure. By contrast, the composites were more sensitive to temperature variations as a result of thermal stresses induced between fique fibers and the epoxy matrix.

8.
Sci Total Environ ; 905: 167023, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717767

RESUMO

Animal fibers are an important raw material for the fashion industry but have recently been discussed due to the environmental impacts related to their production. In order to provide scientific information for decision-making in the Peruvian alpaca sector a cradle to grave carbon footprint of one (01) wear of a 100 % alpaca fiber sweater has been conducted. For the modeling of the fiber procurement stage primary data regarding livestock management and annual production parameters were obtained from interviews with 42 Peruvian alpaca herders from the main producing regions in South and Central Peru. Data for the processing stages (spinning and dyeing, knitting and weaving) were collected by means of interviews and questionnaires from three alpaca fashion companies in Arequipa and Lima. The distribution, use, and end-of-life stages were modeled with secondary data. The resulting carbon footprint of one wear of the alpaca fiber sweater is 0.449 kg CO2 equivalents (CO2e). Most emissions occur during the lifecycle stages of fiber production and distribution (70 % and 14 % of CO2e emissions, respectively). Methane emissions from enteric fermentation account for 87 % of the impact within the fiber procurement stage. The environmental impacts during the distribution stage were dominated by retailing and road transport in the destination countries and export by air and sea (53.1 % and 46.4 % of carbon emissions in this stage, respectively). Other life cycle stages were found to be less relevant emission sources. The study concluded that the main strategies for impact mitigation should focus on improving the efficiency of the fiber procurement systems. Furthermore, several knowledge gaps have been identified and should be addressed by future research regarding methane emissions associated with the main co-products of the livestock systems, ecosystem services in the Andes and especially Andean wetlands and potential mitigation strategies of greenhouse gases related to different pasture management options.

9.
Polymers (Basel) ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37688176

RESUMO

Seeking to improve personal armor equipment by providing mobility and resistance to penetration, this research aimed to explore the potential of sustainable materials in order to assess their ability in ballistic applications. Titica vine fibers (TVFs) extracted from aerial roots of Heteropsis flexuosa from the Amazon region were incorporated at 10, 20, 30, and 40 vol% into an epoxy matrix for applications in ballistic multilayered armor systems (MASs) and stand-alone tests for personal protection against high-velocity 7.62 mm ammunition. The back-face signature (BFS) depth measured for composites with 20 and 40 vol% TVFs used as an intermediate layer in MASs was 25.6 and 32.5 mm, respectively, and below the maximum limit of 44 mm set by the international standard. Fracture mechanisms found by scanning electron microscopy (SEM) attested the relevance of increasing the fiber content for applications in MASs. The results of stand-alone tests showed that the control (0 vol%) and samples with 20 vol% TVFs absorbed the highest impact energy (Eabs) (212-176 J), and consequently displayed limit velocity (VL) values (213-194 m/s), when compared with 40 vol% fiber composites. However, the macroscopic evaluation found that, referring to the control samples, the plain epoxy shattered completely. In addition, for 10 and 20 vol% TVFs, the composites were fragmented or exhibited delamination fractures, which compromised their physical integrity. On the other hand, composites with 30 and 40 vol% TVFs, whose Eabs and VL varied between 166-130 J and 189-167 m/s, respectively, showed the best physical stability. The SEM images indicated that for composites with 10 and 20 vol% TVFs, the fracture mode was predominantly brittle due to the greater participation of the epoxy resin and the discrete action of the fibers, while for composites with 30 and 40 vol% TVFs, there was activation of more complex mechanisms such as pullout, shearing, and fiber rupture. These results indicate that the TVF composite has great potential for use in bulletproof vests.

10.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571110

RESUMO

Hybrid composites are expanding applications in cutting-edge technology industries, which need materials capable of meeting combined properties in order to guarantee high performance and cost-effectiveness. This original article aimed for the first time to investigate the hybrid laminated composite thermal behavior, made of two types of fibers: synthetic Twaron® fabric and natural curaua non-woven mat, reinforcing epoxy matrix. The composite processing was based on the ballistic helmets methodology from the North American Personal Armor System for Ground Troops, currently used by the Brazilian Army, aiming at reduced costs, total weight, and environmental impact associated with the material without compromising ballistic performance. Thermal properties of plain epoxy, aramid fabric, and curaua mat were evaluated, as well as the other five configurations of hybrid laminated composites. These properties were compared using thermogravimetric analysis (TGA) with its derivative (DTG), differential thermal analysis (DTA), and thermomechanical analysis (TMA). The results showed that the plain epoxy begins thermal degradation at 208 °C while the curaua mat at 231 °C and the aramid fabric at 477 °C. The hybrid laminated composites curves showed two or three inflections in terms of mass loss. The only sample that underwent thermal expansion was the five-aramid and three-curaua layers composite. In the third analyzed temperature interval, related to the glass transition temperature of the composites, there was, in general, an increasing thermal stability behavior.

11.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904436

RESUMO

Engineering activities aim to satisfy the demands of society. Not only should the economic and technological aspects be considered, but also the socio-environmental impact. In this sense, the development of composites with the incorporation of waste has been highlighted, aiming not only for better and/or cheaper materials, but also optimizing the use of natural resources. To obtain better results using industrial agro waste, we need to treat this waste to incorporate engineered composites and obtain the optimal results for each application desired. The objective of this work is to compare the effect of processing coconut husk particulates on the mechanical and thermal behavior of epoxy matrix composites, since we will need a smooth composite in the near future to be applied by brushes and sprayers with a high quality surface finish. This processing was carried out in a ball mill for 24 h. The matrix was a Bisphenol A diglycidyl ether (DGEBA)/triethylenetetramine (TETA) epoxy system. The tests that were performed were resistance to impact and compression, as well as the linear expansion test. Through this work, it can be observed that the processing of coconut husk powder was beneficial, allowing not only positive improvements to the properties of the composite, but also a better workability and wettability of the particulates, which was attributed to the change in the average size and shape of particulates. That means that the composites with processed coconut husk powders have improved impact strength (46 up to 51%) and compressive strength (88 up to 334%), in comparison with unprocessed particles.

12.
Polymers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772005

RESUMO

Biological agents and their metabolic activity produce significant changes over the microstructure and properties of composites reinforced with natural fibers. In the present investigation, oil palm empty fruit bunch (OPEFB) fiber-reinforced acrylic thermoplastic composites were elaborated at three processing temperatures and subjected to water immersion, Prohesion cycle, and continuous salt-fog aging testing. After exposition, microbiological identification was accomplished in terms of fungal colonization. The characterization was complemented by weight loss, mechanical, infrared, and thermogravimetric analysis, as well as scanning electron microscopy. As a result of aging, fungal colonization was observed exclusively after continuous salt fog treatment, particularly by different species of Aspergillus spp. genus. Furthermore, salt spray promoted filamentous fungi growth producing hydrolyzing enzymes capable of degrading the cell walls of OPEFB fibers. In parallel, these fibers swelled due to humidity, which accelerated fungal growth, increased stress, and caused micro-cracks on the surface of composites. This produced the fragility of the composites, increasing Young's modulus, and decreasing both elongation at break and toughness. The infrared spectra showed changes in the intensity and appearance of bands associated with functional groups. Thermogravimetric results confirmed fungal action as the main cause of the deterioration.

13.
Data Brief ; 45: 108618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426085

RESUMO

Natural fibers used as reinforcements or fillers for materials development greatly affect properties and performance of end-use applications. As a consequence of conditioning processes such as grinding and sieving, average fiber length varies significantly. It is thus necessary to estimate the length as statistical data distribution rather than a single mean value. This approach implies length measurement of a significant number of fibers; however, a very high number of data points requires not only long-time frames but also significative amount of work. To address these issues, this article details a facile methodology to measure the length of a large number of natural fibers of oil palm empty fruit bunch (OPEFB) together with a statistical analysis to verify the correspondence between theoretical distributions and experimental data. Moreover, further information related to spectrophotometric, physico-chemical, mechanical, thermal, and morphological characteristics of OPEFB fibers coming from oil palm cultivation in Ecuador are presented. The data will contribute to comprehensively and rigorously describe the overall effects of natural fiber lengths on material properties.

14.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235924

RESUMO

Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1-5 wt% henequen flour comprising particles with sizes between 90-250 µm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs' measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young's modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs' maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs' maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.

15.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080724

RESUMO

Fiber-reinforced composites are among the most investigated and industrially applied materials. Many studies on these composites using fibers, especially with natural fibers, were made in response to an urgent action for ambient preservation. A particularly relevant situation exists nowadays in the area of materials durability. In this respect, no studies on water-immersion-accelerated aging in fique fiber-epoxy composites are reported. This work aimed to fill this gap by investigating the epoxy matrix composites reinforced with 40 vol% fique fabric. The epoxy matrix and the composite, both unaged and aged, were characterized by weight variation, water absorption, morphology, colorimetry (CIELAB method), Fourier transform infrared spectroscopy (FTIR) and dynamic-mechanical analysis (DMA). The main results were that degradation by water presents appearance of complex microfibril structures, plasticization of epoxy resin, and debonding of the fique fiber/epoxy matrix. The most intense color change was obtained for the water-immersion-aged epoxy by 1440 h. Cole-Cole diagrams revealed the heterogeneity of the materials studied.

16.
Polymers (Basel) ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145894

RESUMO

Curaua, as a leaf-based natural fiber, appears to be a promising component with aramid fabric reinforcement of hybrid composites. This work deals with the investigation of flexural, impact and elastic properties of non-woven curaua-aramid fabric hybrid epoxy composites. Five configurations of hybrid composites in a curaua non-woven mat with an increasing quantity of layers, up to four layers, were laminated through the conventional hand lay-up method. The proposed configurations were idealized with at least 60 wt% reinforcement in the non-alternating configuration. As a result, it was observed that the flexural strength decreased by 33% and the flexural modulus by 56%. In addition, the energy absorbed in the Charpy impact also decreased in the same proportion as the replaced amount of aramid. Through the impulse excitation technique, it was possible observe that the replacement of the aramid layers with the curaua layers resulted in decreased elastic properties. However, reduction maps revealed proportional advantages in hybridizing the curaua with the aramid fiber. Moreover, the hybrid composite produced an almost continuous and homogeneous material, reducing the possibility of delamination and transverse deformation, which revealed an impact-resistant performance.

17.
Polymers (Basel) ; 14(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808633

RESUMO

A typical ballistic protection helmet for ground military troops has an inside laminate polymer composite reinforced with 19 layers of the aramid, which are neither recyclable or biodegradable and are relatively expensive. The hybridization of synthetic aramid with a natural lignocellulosic fiber (NLF) can provide a lower cost and desirable sustainability to the helmet. In the present work, the curaua fiber, one of the strongest NLFs, is, for the first time, considered in non-woven mat layers to partially replace the aramid woven fabric layers. To investigate the possible advantage of this replacement, the tensile and impact properties of aramid/curaua hybrid laminated composites intended for ballistic helmets, in which up to four layers of curaua were substituted for the aramid, were evaluated. Tensile strength, toughness, and elastic modulus decreased with the replacement of the aramid while the deformation of rupture was improved for the replacement of nine aramid layers by two layers of curaua. Preliminary impact tests corroborate the decreasing tendency found in the tensile properties with the replacement of the aramid by curaua. Novel proposed Reduction Maps showed that, except for the replacement of four aramid layers by one layer of curaua, the decrease percentage of any tensile property value was lower than the corresponding volume percentage of replaced aramid, which revealed advantageous hybridization for the replacement of nine or more aramid layers.

18.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808674

RESUMO

In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAKS) composites is modeled. The classical model of Kelly-Tyson and its Bowyer-Bader's solution is not able to reproduce the entire stress-strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites. The proposed method integrates both the information of the experimental stress-strain curves and the morphology of the fiber bundles within the composite to estimate the interfacial shear strength (IFSS), fiber orientation efficiency factor ηFOD, fiber length efficiency factor ηFLD and critical fiber length lc. It was possible to reproduce the stress-strain curves of the PP+GAKS composite with low residual standard deviation. A methodology was applied using X-ray microtomography and digital image processing techniques for the precise extraction of the micromechanical parameters involved in the model. The results showed good agreement with the experimental data.

19.
Materials (Basel) ; 15(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35454501

RESUMO

This work presents the experimental study of hybrid cement-based composites with polyvinyl alcohol fiber (PVA) and alkali-treated, short, natural curaua fiber. The objective of this research is to develop composites reinforced with PVA and curaua fiber to present strain-hardening behavior with average crack width control. To achieve this objective, three groups of composites were investigated. The first group had only PVA fiber in volumes of 0.5, 1, and 2%. The composite with 2% PVA fiber was the only one with strain-hardening and crack width control. The second group had 0.5% PVA fiber and volume fractions of 2, 2.5, and 3% curaua fiber, and presented only deflection-hardening behavior. The third group had 1% PVA and volumes of 1, 1.5, and 2% curaua fiber, and presented strain-hardening behavior. Based on the results, the hybrid combination of 1% PVA and 1.5% curaua was the optimal mixture as it presented strain-hardening behavior and crack width control, with a lower volume of synthetic PVA fiber. Additionally, compressive strength and mix workability were calculated for the investigated composites for comparison.

20.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160392

RESUMO

Mechanical properties of composites reinforced with lignocellulosic fibers have been researched in recent decades. Jute and mallow fibers are reinforcement alternatives, as they can contribute to increase the mechanical strength of composite materials. The present work aims to predict the Young's modulus with application of continuous and aligned lignocellulosic fibers to be applied as reinforcement in polyester matrix. Fibers were manually separated and then arranged and aligned in the polyester matrix. Composites with addition 5, 15, and 25 vol% jute and mallow fibers were produced by vacuum-assisted hand lay-up/vaccum-bagging procedure. Samples were tested in tensile and the tensile strength, elasticity modulus, and deformation were determined. Results showed that the intrinsic Young's modulus of the fibers was set at values around 17.95 and 11.72 GPa for jute and mallow fibers, respectively. Statistical analysis showed that composites reinforced with 15 and 25 vol% jute and mallow presented the highest values of tensile strength and Young's modulus. The incorporation of 25 vol% of jute and mallow fibers increased the matrix Young's modulus by 534% and 353%, respectively, effectively stiffening the composite material. Prediction models presented similar values for the Young's modulus, showing that jute and mallow fibers might be used as potential reinforcement of polymeric matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA