Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BioTech (Basel) ; 13(3)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39051336

RESUMO

This work aimed to identify the influence of pH, molarity, w/v fraction, extraction time, agitation, and either a sodium (Na2HPO4·7H2O-NaH2PO4·H2O) or potassium buffer (K2HPO4-KH2PO4) used in the extraction of C-phycoerythrin (C-PE) from a thermotolerant strain of Potamosiphon sp. An experimental design (Minimum Run Resolution V Factorial Design) and a Central Composite Design (CCD) were used. According to the statistical results of the first design, the K-PO4 buffer, pH, molarity, and w/v fraction are vital factors that enhance the extractability of C-PE. The construction of a CCD design of the experiments suggests that the potassium phosphate buffer at pH 5.8, longer extraction times (50 min), and minimal extraction speed (1000 rpm) are ideal for maximizing C-PE concentration, while purity is unaffected by the design conditions. This optimization improves extraction yields and maintains the desired bright purple color of the phycobiliprotein.

2.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540952

RESUMO

Food residues are a promising resource for obtaining natural pigments, which may replace artificial dyes in the industry. However, their use still presents challenges due to the lack of suitable sources and the low stability of these natural compounds when exposed to environmental variations. In this scenario, the present study aims to identify different food residues (such as peels, stalks, and leaves) as potential candidates for obtaining natural colorants through eco-friendly extractions, identify the colorimetric profile of natural pigments using the RGB color model, and develop alternatives using nanotechnology (e.g., liposomes, micelles, and polymeric nanoparticles) to increase their stability. The results showed that extractive solution and residue concentration influenced the RGB color profile of the pigments. Furthermore, the external leaves of Brassica oleracea L. var. capitata f. rubra, the peels of Cucurbita maxima, Cucurbita maxima x Cucurbita moschata, and Beta vulgaris L. proved to be excellent resources for obtaining natural pigments. Finally, the use of nanotechnology proved to be a viable alternative for increasing the stability of natural colorants over storage time.

3.
J Fungi (Basel) ; 10(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276023

RESUMO

Pigments of fungal origin have aroused increasing interest in the food dye and cosmetic industries since the global demand for natural dyes has grown. Endophytic microorganisms are a source of bioactive compounds, and Amazonian plant species can harbor fungi with a wide range of biotechnological applications. Popularly known in Brazil as crajiru, Fridericia chica is a medicinal plant that produces a red pigment. In this study, a total of 121 fungi were isolated in potato dextrose agar from three plants. We identified nine pigment-producing endophytic fungi isolated from branches and leaves of F. chica. The isolates that showed pigment production in solid media were molecularly identified via multilocus analysis as Aspergillus welwitschiae, A. sydowii, Curvularia sp., Diaporthe cerradensis (two strains), Hypoxylon investiens, Neoscytalidium sp. (two strains) and Penicillium rubens. These isolates were subjected to submerged fermentation in two culture media to obtain metabolic extracts. The extracts obtained were analyzed in terms of their absorbance between 400 and 700 nm. The pigmented extract produced by H. investiens in medium containing yeast extract showed maximum absorbance in the red absorption range (UA700 = 0.550) and significant antioxidant and antimicrobial activity. This isolate can thus be considered a new source of extracellular pigment.

4.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194647

RESUMO

Recently, growing demand for products enriched with natural compounds that support human health has been observed. Black rice, its by-products, and residues are known to have in their composition a large amount of these compounds with biological potential, mainly anthocyanins. These compounds have reported effects on anti-obesity, antidiabetic, antimicrobial, anticancer, neuroprotective, and cardiovascular disease. Therefore, the extract from black rice or its by-products have great potential for application as ingredients in functional foods, supplements, or pharmacological formulations. This overview summarizes the methods employed for the extraction of anthocyanins from both black rice and its by-products. In addition, trends in applications of these extracts are also evaluated regarding their biological potential. Commonly, the extraction methods used to recover anthocyanins are conventional (maceration) and some emerging technologies (Ultrasound-Assisted Extraction - UAE, and Microwave-Assisted Extraction - MAE). Anthocyanin-rich extracts from black rice have presented a biological potential for human health. In vitro and in vivo assays (in mice) showed these compounds mainly with anti-cancer properties. However, more clinical trials are still needed to prove these potential biological effects. Extracts from black rice and its by-products have great potential in applying functional products with beneficial characteristics to humans and reducing agro-industrial residues.

5.
Crit Rev Food Sci Nutr ; 63(24): 6777-6796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35191785

RESUMO

Anthocyanins are naturally occurring bioactive compounds found mainly in fruits, vegetables, and grains. They are usually extracted due to their biological properties and great potential for technological applications. These compounds have characteristic pH-dependent colorations that are natural dyes since they come in different colors. However, they are susceptible to processing conditions, remarkably light, temperature, and oxygen. The acylated anthocyanins showed better stability characteristics, and therefore, an acylation process of these compounds could improve their applications. The enzymatic acylation was effective and showed promising results. The current review provides an overview of the works that performed enzymatic acylation of anthocyanins and studies on the stability, antioxidant activity, and lipophilicity. In general, enzymatically acylated anthocyanins showed better stability to light and temperature than non-acylated compounds. In addition, they were liposoluble, a characteristic that allows their addition to products with lipid matrices. The results showed that these compounds formed by enzymatic acylation have perspectives of application mainly as natural colorants in food products. Therefore, the enzymatic acylation of anthocyanins appears viable to increase the industrial applicability of anthocyanins. There are still some gaps to be filled in process optimization, the reuse of enzymes, and toxicity analysis of the acylated compounds formed.


Assuntos
Antocianinas , Antioxidantes , Antocianinas/metabolismo , Temperatura , Acilação , Frutas/metabolismo
6.
Bioprocess Biosyst Eng ; 46(1): 147-156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437377

RESUMO

Consumer choice is typically influenced by color, leading to an increase in the use of artificial colorants by industry. However, several artificial colorants have been banned due to their harmful effects on human health and the environment, leading to increased interest in colorants from natural sources. Natural colorants can be found in plants, insects, and microorganisms. The importance of evaluating the technical and cost feasibility for the production of natural colorants are important factors for the replacement of artificial counterpart. Therefore, it is highly beneficial to predict the productivity of microbial colorants. The use of statistical methods that generate polynomial models through multiple regressions can provide information of interest about a bioprocess. However, modeling and control of biological processes require complex systems models, because they are nonlinear and non-deterministic systems. In this regard, artificial neural networks are suitable for estimating bioprocess variables with systems modeling. In this work, two different strategies were developed to predict the production of red colorants by Talaromyces amestolkiae, namely simulation by artificial neural networks (ANN) and response surface methodology (RSM). The results showed that the colorant concentration predicted by ANN is closer to the experimental data than that predicted by polynomial models fitted by multiple regression. Thus, this work suggests that the use of ANN can identify the initial conditions of the culture parameters that have the greatest influence on colorant production and can be a tool to be employed to improve the production of biotechnological products, such as microbial colorants.


Assuntos
Biotecnologia , Talaromyces , Humanos , Biotecnologia/métodos , Redes Neurais de Computação
7.
J Food Sci Technol ; 59(3): 944-955, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153322

RESUMO

This work aimed at developing powders rich in antioxidants and pigments from two wild berries: maqui (Aristotelia chilensis) and murra (Rubus ulmifolius). Fruits were subjected to successive ultrasound-assisted extractions (UAE) and then freeze-dried. Physical properties, anthocyanin stability of powders, and their performance as natural colorants in yogurts were evaluated. The optimum extraction methods were: UAE for 10 min in murra, and without UAE (control) in maqui, with juice extraction yields ranging between 80 and 82%. Maqui powder exhibited ≈ 2.8 times more polyphenol and anthocyanin content than murra. However, murra powder showed better stability characteristics as powder colorant since it exhibited greater protection of anthocyanins by means of copigmentation phenomena. Regarding consumer's perception of colored yogurt, samples with 4% and 8% maqui powder could be considered as future prototypes to be launched into the market. The obtained powders may be used in different industrial food applications.

8.
J Food Sci ; 86(9): 3896-3908, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383307

RESUMO

Greek-style yogurt (GSY) has gained reputation as a healthy food because of its high protein content. Vaccinium meridionale S. is a bilberry with a high content of bioactive phytochemicals, whose vaccinium meridionale pomace (VMP) represents about 20% of the fruit weight. However, this byproduct is normally discarded as waste. In this study, VMP was used as a natural colorant in GSY. Coloring before or after the fermentation process resulted in significant increase in anthocyanins, total phenolics content, antioxidant activity, conjugated linoleic acid, and sensory acceptance. These results indicate that VMP is a potential natural, eco-friendly, and functional colorant to improve the nutritional value of GSY. PRACTICAL APPLICATION: Vaccinium meridionale pomace is a waste product with potential to be utilized as a natural, eco-friendly, and functional colorant to obtain value-added Greek-style yogurt. Besides providing bioactive compounds and natural color, this pomace improves the nutritional value, sensory acceptance, and functional properties of Greek yogurt.


Assuntos
Corantes de Alimentos , Vaccinium , Iogurte , Antocianinas/química , Corantes de Alimentos/química , Corantes de Alimentos/normas , Frutas/química , Vaccinium/química , Iogurte/análise , Iogurte/normas
9.
J Fungi (Basel) ; 6(4)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147713

RESUMO

Natural colorants from microbial fermentation have gained significant attention in the market to replace the synthetic ones. Talaromyces spp. produce yellow-orange-red colorants, appearing as a potential microorganism to be used for this purpose. In this work, the production of natural colorants by T. amestolkiae in a stirred-tank bioreactor is studied, followed by its application as additives in bio-based films. The effect of the pH-shift control strategy from 4.5 to 8.0 after 96 h of cultivation is evaluated at 500 rpm, resulting in an improvement of natural colorant production, with this increase being more significant for the orange and red ones, both close to 4-fold. Next, the fermented broth containing the colorants is applied to the preparation of cassava starch-based films in order to incorporate functional activity in biodegradable films for food packaging. The presence of fermented broth did not affect the water activity and total solids of biodegradable films as compared with the standard one. In the end, the films are used to pack butter samples (for 45 days) showing excellent results regarding antioxidant activity. It is demonstrated that the presence of natural colorants is obtained by a biotechnology process, which can provide protection against oxidative action, as well as be a functional food additive in food packing biomaterials.

10.
Food Chem ; 333: 127457, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659665

RESUMO

The present work describes the evaluation of fig peels and blackthorn fruit extracts as natural purple colorants in doughnuts (icing) and in a typical Brazilian pastry called "beijinho". The extracts were screened for their antioxidant activity as well as their antibacterial capacity. Nutritionally, the employed extracts did not induce significant changes, contrarily to the observed for the rheological features, mainly the darker purple tone observed when blackthorn extract was used in the icing solution. After 24 h, both prepared formulations showed a decrease in color intensity, with no significant differences between fig and blackthorn extracts. In turn, the firmness and consistency of the doughnuts benefited from using natural colorants in the icing solution, while "beijinhos" became softer and chewier, which are valued attributes. A significant increase in the antioxidant and antimicrobial activities was also observed for both natural extracts. Accordingly, the evaluated extracts are promising candidates as natural food colorants.


Assuntos
Antocianinas/química , Ficus/química , Corantes de Alimentos/química , Extratos Vegetais/química , Prunus/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Brasil , Doces , Cor , Frutas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Ovinos
11.
J Food Sci ; 84(12): 3473-3482, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31721214

RESUMO

This work aimed to investigate the phytochemical composition, nutritional value, antioxidant, antihemolytic, antihyperglycemic, and antiproliferative activities of flaxleaf fleabane (Conyza bonariensis) leaves. Different concentrations of water and ethanol (0:100, 25:75, 50:50, 75:25, and 100:0 v/v) were used in the extraction process and results showed that the hydroalcoholic extract (50:50 v/v) presented the highest total phenolics, ortho-diphenolics, Folin-Ciocalteu reducing capacity, FRAP, and Fe2+ chelating ability values. Flaxleaf fleabane leaves (FFL) contained 19.6 g/100 g of fibers and 26 g/100 g of proteins. Ellagic acid, procyanidin A2, caffeic, rosmarinic, gallic, and 2,5-dihydroxybenzoic acids were the main phenolics. This phenolic-rich extract inhibited the lipid oxidation of Wistar rat brain (IC50 = 863.0 mg GAE/L), inhibited α-glucosidase activity (IC50 = 435.4 µg/mL), protected human erythrocytes against mechanical hemolysis at different osmolarity conditions, and showed cytotoxic/antiproliferative effects against human ileocecal adenocarcinoma cells (HCT8; IC50 = 552.6 µg/mL) but no cytotoxicity toward noncancerous human lung fibroblast (IMR90). Overall, FFL showed potential to be explored by food companies to be a source of proteins, natural color substances, and phenolic compounds. PRACTICAL APPLICATION: Flaxleaf fleabane leaves (FFL) are usually burnt or partially given to cattle, without a proper utilization as a source of nutrients for human nutrition. Here, we studied the nutritional composition, phenolic composition, and toxicological aspects of FFL using different biological protocols. FFL was proven to be a rich source of proteins and dietary fibers and showed antioxidant activity measured by chemical and in vitro biological assays. Additionally, as it did protected human red cells and did not show cytotoxicity, we assume FFL has relative safety to be consumed as a nonconventional edible plant.


Assuntos
Conyza/química , Compostos Fitoquímicos/análise , Animais , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Conyza/metabolismo , Alimento Funcional/análise , Inibidores de Glicosídeo Hidrolases/análise , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Valor Nutritivo , Fenóis/análise , Fenóis/metabolismo , Fenóis/farmacologia , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Ratos , Ratos Wistar , alfa-Glucosidases/química
12.
Biotechnol Prog ; 35(1): e2684, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006968

RESUMO

The population interest in health products is increasing day-by-day. Thus, the demand for natural products to be added in food and pharmaceutical commodity is also rising. Among these additives, colorants, which provides color to products, can be produced by microorganism through bioprocess. Looking for new source of natural colorants, fungi have been employed to this purpose producing novel and safer natural colorants. So, the main goal of this study was to describe a Talaromyces species able to produce natural colorants and investigate nutritional parameters of colorants production using statistical tool. The taxonomy classified the microorganism as Talaromyces amestolkiae. The statistical design evaluated pH and glucose, meat extract and meat peptone concentration as independent variables, and red colorants production as main response. Under the best condition (g/L: glucose 30, meat extract 1, meat peptone 10, and initial pH of 7.0) an increase of 229% in the red colorant production was achieved as compared with the initial media used. The dried fermented broth containing red colorants showed low cytotoxicity against fibroblasts cells (IC50 > 187.5 g/L) and effective antimicrobial activity against S. aureus (MIC of 2.5 g/L). Thus, T. amestolkiae colorants can be attractive to food and pharmaceutical applications as it does not produce toxic compounds and can promote protection against microorganism contaminants. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2684, 2019.


Assuntos
Pigmentos Biológicos/efeitos adversos , Pigmentos Biológicos/farmacologia , Talaromyces/classificação , Talaromyces/metabolismo , Fermentação , Fibroblastos/efeitos dos fármacos , Filogenia , Pigmentos Biológicos/metabolismo , Staphylococcus aureus/efeitos dos fármacos
13.
Appl Microbiol Biotechnol ; 100(6): 2511-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780357

RESUMO

In the last years, there is a trend towards the replacement of synthetic colorants by natural ones, mainly due to the increase of consumer demand for natural products. The natural colorants are used to enhance the appearance of pharmaceutical products, food, and different materials, making them preferable or attractive. This review intends to provide and describe a comprehensive overview of the history of colorants, from prehistory to modern time, of their market and their applications, as well as of the most important aspects of the fermentation process to obtain natural colorants. Focus is given to colorants produced by filamentous fungal species, aiming to demonstrate the importance of these microorganisms and biocompounds, highlighting the production performance to get high yields and the aspects of conclusion that should be taken into consideration in future studies about natural colorants.


Assuntos
Corantes/isolamento & purificação , Fungos/metabolismo , Pigmentos Biológicos/isolamento & purificação
14.
Braz J Microbiol ; 45(2): 731-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242965

RESUMO

Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool.


Assuntos
Biotecnologia/métodos , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/metabolismo , Meios de Cultura/química , Fatores de Tempo
15.
Braz. j. microbiol ; Braz. j. microbiol;45(2): 731-742, Apr.-June 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-723140

RESUMO

Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool.


Assuntos
Biotecnologia/métodos , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/metabolismo , Meios de Cultura/química , Fatores de Tempo
16.
Braz. J. Microbiol. ; 45(2): 731-742, Apr.-June 2014. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-27547

RESUMO

Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool.


Assuntos
Biotecnologia/métodos , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/metabolismo , Meios de Cultura/química , Fatores de Tempo
17.
São Paulo; s.n; s.n; mar. 2013. 199 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-837082

RESUMO

Há interesse mundial no desenvolvimento de pesquisas envolvendo produção e extração de colorantes naturais, devido a sérios problemas de segurança industrial associados ao uso de colorantes sintéticos. Este trabalho objetivou produzir colorantes naturais de Penicillium purpurogenum DPUA 1275 por cultivo submerso (em frascos agitados e em biorreator) e estudar a extração dos colorantes vermelhos. Para a produção, os estudos iniciais mostraram que 5 discos de micélio, sacarose e extrato de levedura como fontes de carbono e nitrogênio, respectivamente, e 336 horas de cultivo eram condições adequadas para a produção dos colorantes. Visando à otimização da produção, realizaram-se planejamentos fatoriais, com as variáveis independentes: tempo de cultivo; velocidade de agitação; pH; temperatura; concentração de sacarose e de extrato de levedura. As variáveis-respostas foram produção de colorantes amarelos, laranjas e vermelhos. Dos resultados obtidos, as variáveis mais significativas ao processo foram concentrações de extrato de levedura e de sacarose. A produção dos colorantes vermelhos foi otimizada, alcançando a produção de 2,97 UA490nm, nas condições 48,90 e 11,80 g/L de sacarose e extrato de levedura, respectivamente, 30°C, pH 4,5 150 rpm e 336 horas de cultivo. Nos experimentos em biorreator, o melhor resultado foi obtido na frequência de agitação de 500 rpm e na mudança do pH do meio para 8,0, após 96 horas de bioprocesso. Ademais, avaliou-se a estabilidade dos colorantes vermelhos presentes no meio fermentado em diferentes condições (pH, temperatura, sais, polímeros e tensoativos). Referente a pH e temperatura, os colorantes vermelhos mostraram-se mais estáveis nas condições alcalinas e a 70 °C. Tanto os sais (NaCl e Na2SO4) quanto os polímeros (PEG 1.000, 6.000 e 10.000 g/mol e NaPA 8.000 g/mol a 5 e 15%) e os tensoativos (Tween 20, CTAB e SDS) não causaram perda da cor nas condições avaliadas. Estudos de solubilidade e de coeficiente de partição octanol-água mostraram que os colorantes vermelhos apresentam solubilidade superior em solventes polares e característica mais hidrofílica. Nos estudos de extração, as técnicas avaliadas foram Sistemas Poliméricos de Duas Fases Aquosas (SPDFA) formados pelo sistema PEG/NaPA e Colloidal Gas Aphrons (CGA). Pela primeira técnica, os colorantes vermelhos migraram preferencialmente para a fase PEG. Os polímeros PEG 6.000 g/mol, na presença de NaCl 0,1 e 0,5 M, e PEG 10.000 g/mol, com Na2SO4 0,5M, se destacaram dentre as condições analisadas com coeficiente de partição (K) próximo a 13, em ambos os casos, e seletividade de proteínas (SeP) próximas a 3. Para a técnica de CGA, o CTAB proporcionou os melhores resultados, seguido do Tween 20. Porém, o valor de K foi inferior ao obtido com SPDFA, com um máximo de 5 (CTAB 2 mM/pH 9,0). Os resultados obtidos demonstram um novo produtor de colorantes naturais, as quais têm potencial de aplicação em diversos segmentos industriais. Ademais, os resultados obtidos mostraram a eficiência das técnicas utilizadas para extração dos colorantes vermelhos, com destaque para SPDFA, que apresentou maiores valores de K


There is worldwide interest in developing research projects involving the production and extraction of natural colorants due to serious safety problems associated with industrial use of synthetic ones. The aim of this work was to investigate the production of natural colorants from Penicillium purpurogenum DPUA 1275 by submerged culture (rotatory shaker and bioreactor) besides studying the red colorants extraction. To the production step, initial studies showed that 5 agar mycelial discs, sucrose and yeast extract as carbon and nitrogen sources, respectively, and 336 hours of bioprocess promoted the best results. To optimize the colorants production a serie of factorial designs were performed. The independent variables studied were: fermentation time, agitation speed, pH, temperature, sucrose and yeast extract concentration under the responses production of yellow, orange and red colorants. From these results, the most significant variables for the process were sucrose and yeast extract concentration. The red colorants production was optimized achieving 2.97 UA490nm, in the following conditions: 48.90 and 11.80 g/L of sucrose and yeast extract, respectively, 30 °C, 4.5 pH, 150 rev min-1 and 336 hours of culture. In the experiments performed in bioreactor, the condition that promoted the best results was 500 rpm and pH adjusted for 8.0 after 96 hours of bioprocess. Furthermore, we evaluated the red colorants stability at different conditions (pH, temperature, salts, polymers and surfactants). Concerning to pH and temperature, the red colorants were more stable under basic conditions and 70 °C; not only the salts (NaCl and Na2SO4) but also the polymers (PEG 1000, 6000 and 10000 g/mol and NaPA 8000 g/mol) and the surfactants (Tween 20, CTAB and SDS) not promoted loss of color upon the conditions evaluated. Studies of red colorants solubility and octanol water coefficient showed that these compounds exhibit a higher solubility in polar solvents and present hydrophilic characteristics. Subsequently, the extraction of red colorant was evaluated through two extraction methods: Polymeric Systems Aqueous Two Phase (ATPS) composed by PEG and NaPA and Colloidal Gas Aphrons (CGA). For the first technique, the red colorant preferentially migrated to the PEG phase. The best results were obtained with PEG 6000 g/mol in the presence of 0.1 to 0.5 M NaCl and with PEG 10000 g/mol with 0.5 M Na2SO4. To both cases the partition coefficient (K) was close to 13 and the Selectivity in terms of proteins (SeP) was close to 3. For the CGA technique, CTAB gave the best results followed by Tween 20. However, the K values were lower than the ones obtained with ATPS with a maximum of 5 in the following condition: CTAB 2 mM/pH 9.0. For the SeP, the values obtained for both techniques were close. The results above show a new producer of natural colorants which have potential application in various industries. Moreover, the results show the efficiency of the techniques used to extract the red colorants, especially to ATPS that presented higher K values


Assuntos
Penicillium/crescimento & desenvolvimento , Corantes/análise , Polímeros/farmacologia , Tensoativos/farmacologia , Biotecnologia , Técnicas de Cultura/métodos , Extração Líquido-Líquido , Fungos/isolamento & purificação
18.
Acta biol. colomb ; 13(3): 27-36, Dec. 2008.
Artigo em Espanhol | LILACS | ID: lil-634884

RESUMO

En la actualidad existe una demanda considerable de colorantes naturales alternativos a los colorantes sintéticos, como el rojo No. 40, debido a su toxicidad en alimentos, cosméticos y productos farmacéuticos. Las antocianinas son pigmentos vegetales con gran potencial para el reemplazo competitivo de colorantes sintéticos; por tanto es de gran importancia conocer los aspectos bioquímicos que enmarcan estos pigmentos. El objetivo de esta revisión es ofrecer un esquema actualizado sobre el potencial de las antocianinas como colorantes de origen natural, y de sus propiedades químicas y bioactivas. Las antocianinas son pigmentos responsables de la gama de colores que abarcan desde el rojo hasta el azul de muchas frutas, vegetales y cereales. El interés en estos pigmentos se ha intensificado gracias a sus posibles efectos terapéuticos y benéficos, dentro de los cuales se encuentran la reducción de la enfermedad coronaria, los efectos anticancerígenos, antitumorales, antiinflamatorios y antidiabéticos; además del mejoramiento de la agudeza visual y del comportamiento cognitivo. Las propiedades bioactivas de las antocianinas abren una nueva perspectiva para la obtención de productos coloreados con valor agregado para el consumo humano.


At present there is a considerable demand for natural colorants to replace synthetic ones such red No. 40 due to their toxicity when added to food products, pharmaceuticals or cosmetics. Anthocyanins are vegetable pigments with high potential for replacement of synthetic dyes. Consequently, it is important to know the biochemical aspects that characterize these pigments. The objective of this review is to offer an updated overview of the potential of anthocyanins as natural colorants and their chemical and bioactive properties. Anthocyanins are pigments responsible for colors varying between red and purple in many fruits, vegetables and cereals. Interest in these pigments has intensified due not only to their potential as natural colorants, but also because of their therapeutic properties. Health benefits associated with anthocyanin extracts include reduced risk of coronary heart disease, anticarcinogen and antitumoral activity, anti-inflammatory and antidiabetic effects, improved visual acuity, and improved cognitive behavior. The bioactive properties of anthocyaninas open new perspectives for the use of these pigments in obtaining value-added colored products for human consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA