Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38791776

RESUMO

Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese's pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety.


Assuntos
Queijo , Lacticaseibacillus casei , Soro do Leite , Queijo/microbiologia , Queijo/análise , Lacticaseibacillus casei/metabolismo , Soro do Leite/química , Soro do Leite/microbiologia , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Conservação de Alimentos/métodos , México , Fermentação
2.
Heliyon ; 10(9): e29638, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694112

RESUMO

This study aimed to evaluate the antimicrobial effect of thymol and carvacrol in inhibiting Escherichia coli and Salmonella serovar Typhimurium inoculated on a fresh green salad through the vapor phase. A film-forming solution was prepared by dissolving starch, sorbitol, and variying concentrations of carvacrol, thymol, and a mixture of both. The film-forming solution containing the respective antimicrobial agent was then added lid, which was sealed rigidly and hermetically to achieve different concentrations (105 mg/L of air of carvacrol, 105 mg/L of air of thymol, and a mixture of 52 mg/L of air of carvacrol and 52 mg/L of air of thymol). Each active package contained fresh green salad inoculated with E. coli or Salmonella serovar Typhimurium. The active packages were then sealed and refrigerated at a temperature of 6 °C for 48 h. Growth/inhibition curves were modelled using the Weibull equation, and consumer acceptance was evaluated. Carvacrol can reduce up to 0.5 log-cycles, while thymol can reach almost 1 log cycle. Blending the components with half the concentration has a synergistic effect, inhibiting up to 2.5 log cycles. Consumer ratings revealed no significant differences between the packages. However, the average score was 5.4 on a 9-point hedonic scale, evaluators' comments did not indicate dislike or a strong taste characteristic of thymol and carvacrol.

3.
Foods ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672814

RESUMO

The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.

5.
Pathogens ; 13(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535603

RESUMO

Essential oils are liquids containing non-toxic compounds that are unfavorable to the growth of microorganisms. They are sold globally at affordable or very high prices, depending on the availability and type of plant, the scale of production, the extraction method, costs associated with logistics and electricity consumption, among other variables. Each year, the quantity of research dedicated to the antimicrobial potential of essential oils in poultry farming is expanding. Researchers consensually relay that this increase is due to the growing resistance of microorganisms to traditional antimicrobials and concerns about the toxicity of these products. This review proposes an analysis of the antimicrobial feasibility of using essential oils to address microbial challenges in poultry farms, aiming to ensure the production and supply of microbiologically safe hatching eggs. Based on the findings in the literature, in addition to following other necessary precautions in the daily routines of poultry farming practices, developing an antimicrobial control program with essential oils that integrates poultry facilities, poultry and hatching eggs, adapted to the particularities of each context seems to be extremely effective.

6.
Int J Biol Macromol ; 255: 128079, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977471

RESUMO

This study investigated the production of nanoparticles through nanoprecipitation using cassava and potato starches as carriers to stabilize phenolic compounds (PC) from green propolis extract (PE). Additionally, the antioxidant and antimicrobial activities of PC stabilized with starch nanoparticles (SNPs), as well as their release under gastrointestinal conditions were investigated. PE exhibited antioxidant and antibacterial properties, especially PE3 (PE produced using sonication by 20 min and stirring at 30 °C for 24 h) had the highest concentrations of p-coumaric acid, rutin, kaempferol and quercetin. SNPs displayed bimodal distribution with particle size lower than 340 nm. The stabilization of PC increased surface charge and hydrophobicity in SNPs. Moreover, SNPs containing PC from PE exhibited antibacterial activity against Listeria monocytogenes, at a concentration of 750 mg/mL. Low release of PC was observed from the nanoparticles when exposed under simulated gastrointestinal conditions. These nanomaterials could be used as natural ingredients with antioxidant and antimicrobial properties.


Assuntos
Ascomicetos , Nanopartículas , Própole , Antioxidantes/farmacologia , Amido , Antibacterianos/farmacologia
7.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132801

RESUMO

Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.

8.
Foods ; 12(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835315

RESUMO

Muscle foods are highly perishable products that require the use of additives to inhibit lipid and protein oxidation and/or the growth of spoilage and pathogenic microorganisms. The reduction or replacement of additives used in the food industry is a current trend that requires the support of active-packaging technology to overcome novel challenges in muscle-food preservation. Several nano-sized active substances incorporated in the polymeric matrix of muscle-food packaging were discussed (nanocarriers and nanoparticles of essential oils, metal oxide, extracts, enzymes, bioactive peptides, surfactants, and bacteriophages). In addition, the extension of the shelf life and the inhibitory effects of oxidation and microbial growth obtained during storage were also extensively revised. The use of active packaging in muscle foods to inhibit oxidation and microbial growth is an alternative in the development of clean-label meat and meat products. Although the studies presented serve as a basis for future research, it is important to emphasize the importance of carrying out detailed studies of the possible migration of potentially toxic additives, incorporated in active packaging developed for muscle foods under different storage conditions.

9.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444286

RESUMO

In the food sector, one of the most important economic activities is the dairy industry, which has been facing many challenges in order to meet the increasing demand by consumers for natural and minimally processed products with high quality. In this sense, the application of innovative and emerging technologies can be an interesting alternative, for example, the use of nanotechnology in packaging and as delivery systems. This technology has the potential to improve the quality and safety of dairy products, representing an interesting approach for delivering food preservatives and improving the mechanical, barrier and functional properties of packaging. Several applications and promising results of nanostructures for dairy product preservation can be found throughout this review, including the use of metallic and polymeric nanoparticles, lipid-based nanostructures, nanofibers, nanofilms and nanocoatings. In addition, some relevant examples of the direct application of nanostructured natural antimicrobials in milk and cheese are presented and discussed, as well as the use of milk agar as a model for a preliminary test. Despite their high cost and the difficulties for scale-up, interesting results of these technologies in dairy foods and packaging materials have promoted a growing interest of the dairy industry.

10.
Food Sci Technol Int ; : 10820132231165541, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36974393

RESUMO

The objective of this study was to evaluate the antimicrobial effectiveness of cinnamaldehyde (CIN) and potassium sorbate (P.S.), alone and in combination, against Salmonella Typhimurium and Staphylococcus aureus in vitro and in apple jam. Antimicrobial activity in vitro was investigated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), time-kill assay and determination of fractional inhibitory concentration index. CIN MIC and MBC was 312 µg/mL. P.S. MIC and MBC were 2500 and 5000 µg/mL, respectively, against S. Typhimurium; and 10,000 and 20,000 µg/mL, respectively, against S. aureus. The compounds combined exhibited a synergistic effect (FIC < 0.5), inhibiting S. Typhimurium growth after 12 h and S. aureus after 24 h. The effect of CIN and P.S., at sub-inhibitory concentrations, against bacterial strains in apple jam was evaluated during storage. Physicochemical and sensory analyses were also performed. No cultivable S. Typhimurium or S. aureus cells were recovered in apple jam supplemented with CIN + P.S. on the third day of storage. The addition of CIN and P.S. did not affect the physicochemical properties and sensory evaluation showed a score above 7.0. CIN and P.S. association at sub-inhibitory concentrations was effective in controlling foodborne pathogens and improved the shelf life of apple jam.

11.
Antibiotics (Basel) ; 11(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36358227

RESUMO

(1) Background: This study aimed to use the simplex-centroid mixture design methodology coupled with a microdilution assay to predict optimal essential oil (EO) formulations against three potential foodborne pathogens simultaneously through the desirability (D) function. (2) Methods: Oregano (ORE; Origanum vulgare), thyme (THY; Thymus vulgaris), and lemongrass (LG; Cymbopogon citratus) and their blends were evaluated concerning minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for Salmonella enterica serotype Enteritidis, Escherichia coli and Staphylococcus aureus. (3) Results: THY combined with ORE or LG were the most promising EO formulations in inhibiting and killing each bacterium separately. Regarding the simultaneous effect, the optimal proportion for maximum inhibition was composed of 75% ORE, 15% THY, and 10% LG, while for maximum inactivation was 50% ORE, 40% THY, and 10% LG. (4) Conclusion: The multiresponse optimization allowed identifying an EO blend to simultaneously control three potential foodborne pathogens. This first report could be a helpful natural and green alternative for the industry to produce safer food products and mitigate public health risks.

12.
Arch Microbiol ; 204(6): 292, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503382

RESUMO

Stryphnodendron adstringens is a medicinal plant that has a broad spectrum of action, including antibacterial activity. The aim of the present study was to evaluate the effect of S. adstringens alone and in combination with potassium sorbate (PS) against foodborne bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and, for most of the bacteria tested, the crude extract (CE), aqueous fraction (AQF), and ethyl-acetate fraction (EAF) of S. adstringens had a MIC and MBC ranging from 500 to ≥ 1000 µg/mL. The AQF and EAF showed greater activity against S. aureus strains (MIC = 125 to 250 µg/mL; MBC = 500 to 1000 µg/m). Quantitative cell viability was determined and was observed reductions ranging from 3.0 to 5.8 log10 CFU/ml.The combination of S. adstringens and PS against seven S. aureus isolates was determined by the checkerboard method at neutral and acid pH. In a neutral medium, the AQF + PS combination presented synergistic or additive interactions against six S. aureus strains. The combination of EAF + PS resulted in additive interactions against four bacterial isolates. In an acidic medium, the AQF + PS combination was synergistic or additive against all S. aureus, while EAF + PS presented the same effect against six S. aureus strains S. adstringens showed important antibacterial effects against foodborne S. aureus strains. Moreover, the combination of S. adstringens fractions and PS improved the antibacterial activity compared to the compounds utilized individually. The combined use of these compounds may be an alternative to reduce bacterial food contamination and improve food safety.


Assuntos
Fabaceae , Staphylococcus aureus , Antibacterianos/química , Fabaceae/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ácido Sórbico/farmacologia
13.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681488

RESUMO

Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.

14.
J Evid Based Dent Pract ; 21(2): 101576, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34391562

RESUMO

ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Efficacy of natural antimicrobials derived from phenolic compounds in the control of biofilm in children and adolescents compared to synthetic antimicrobials: A systematic review and meta-analysis. Martins ML, Ribeiro-Lages MB, Masterson D, Magno MB, Cavalcanti YW, Maia LC, Fonseca-Gonçalves A. Arch Oral Biol 2020;118:104844. SOURCE OF FUNDING: Government. This study was financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brazil (CAPES) through the grant number 001. TYPE OF STUDY/DESIGN: Systematic review with meta-analysis of data.


Assuntos
Anti-Infecciosos , Clorexidina , Adolescente , Biofilmes , Brasil , Criança , Humanos , Fenóis
15.
Plants (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34451588

RESUMO

The biological properties of chilean propolis have been described and include antibacterial, antifungal and antibiofilm activities. Propolis has a strong antimicrobial potential. Clinical experiences with synthetic antibiotics indicated the need to discover new sources of bioactive compounds associated with ethnopharmacological knowledge or natural sources such as propolis. The microscopic analysis of pollen grains from plants allows us to determine the botanical origin of the propolis samples. In Angol, sample pollen grains were obtained from fodder plants (Sorghum bicolor; Lotus sp.) and trees, such as Acacia sp., Pinus radiata, Eucalyptus sp. and Salix babylonica. Propolis from the Maule region contains pollen grains from endemic plants such as Quillaja saponaria. Finally, the sample obtained from Melipilla presented a wider variety of pollen extracted from vegetable species.Colorimetric assays performed to quantify the total polyphenols present in Chilean propolis samples established that PCP2 (Angol sample) showed high amounts of phenolics compounds, with significant statistical differences in comparison with the other samples. The main compounds identified were pinocembrin, quercetin and caffeic acid phenethyl ester (CAPE). The Angol sample showed a high content of polyphenols.Studies that determine the influence of geographical and floral variables on the chemical composition of propolis are a valuable source of information for the study of its biological properties.

16.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208209

RESUMO

Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.


Assuntos
Anti-Infecciosos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Lipossomos/química , Nanoestruturas/química , Anti-Infecciosos/química , Lipossomos/administração & dosagem , Nanoestruturas/administração & dosagem
17.
Rev. cuba. med. trop ; 73(1): e509, tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1280334

RESUMO

La leptospirosis es una zoonosis con potencial epidémico y de difícil diagnóstico que requiere un manejo integral para orientar las medidas de prevención y control; sin embargo, una de las dificultades es la existencia de más de 300 serovares, la supervivencia de la bacteria en el ambiente por más de 180 días y la importancia del agua como vehículo de transmisión. Esto asociado con los efectos adversos de los antibióticos y su efecto sobre la multirresistencia generada por la mayoría de las bacterias, hace que se evalúen nuevas alternativas a partir de la biodiversidad. Por lo tanto, el objetivo de este artículo es abordar la leptospirosis y su diagnóstico enfatizando en el control convencional de la infección y las alternativas de tratamiento a partir del uso de plantas medicinales. Para esto se realizó una revisión exhaustiva de artículos en bases de datos. La información encontrada permitió establecer los aspectos relevantes de la enfermedad, su diagnóstico y tratamiento, tanto con antimicrobianos convencionales como frente a nuevas alternativas de origen natural. Se concluye que es importante realizar investigaciones orientadas hacia la búsqueda de principios activos que puedan contribuir al control de Leptospira spp., agente causal de la leptospirosis, una de las zoonosis más importantes por su impacto en salud humana, veterinaria y del ecosistema(AU)


Leptospirosis is a potentially epidemic zoonosis of difficult diagnosis which requires comprehensive management to indicate appropriate prevention and control measures. However, some of the difficulties are the existence of more than 300 serovars, survival of the bacteria in the environment for more than 180 days, and the role of water as a route of transmission. The above situation, alongside the adverse effects of antibiotics and their effect on the multi-drug resistance developed by most bacteria, lead to the search for new alternatives based on biodiversity. The purpose of the study was therefore to address leptospirosis and its diagnosis highlighting conventional control of the infection as well as treatment options based on the use of medicinal plants. To achieve this end, an exhaustive review was conducted of papers included in databases. The information obtained made it possible to determine the relevant aspects of the disease, its diagnosis and its treatment with conventional antimicrobials as well as new alternatives of a natural origin. Conclusions point to the importance of conducting research aimed at the search for active principles potentially contributing to control of Leptospira spp., the causative agent of leptospirosis, one of the most relevant zoonoses in terms of its impact on the health of humans, animals and the ecosystem(AU)


Assuntos
Humanos , Resistência a Múltiplos Medicamentos , Sobrevivência , Leptospirose/diagnóstico , Leptospirose/tratamento farmacológico
18.
Foods ; 10(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467171

RESUMO

The aim of this work was to evaluate the in vitro and in vivo effectiveness of thymol and carvacrol added to edible starch films and coatings against Colletotrichum gloeosporioides. In vitro evaluation consisted of determining minimal inhibitory concentration (MIC) of carvacrol and thymol was determined at different pH values against Colletotrichum gloeosporioides. With MIC values, binary mixtures were developed. From these results, two coatings formulations were in vivo evaluated on mango and papaya. Physicochemical analysis, color change, fruit lesions and C. gloeosporioides growth were determined during storage. In vitro assay indicated that the MIC value of carvacrol and thymol against C. gloeosporioides was 1500 mg/L at pH 5. An additive effect was determined with 750/750 and 1125/375 mg/L mixtures of carvacrol and thymol, respectively. Coated fruits with selected mixtures of carvacrol and thymol presented a delay in firmness, maturity index and color change. Moreover, a fungistatic effect was observed due to a reduction of lesions in coated fruits. These results were corroborated by the increase in the lag phase value and the reduction of the growth rate. Carvacrol and thymol incorporated into edible films and coatings are able to reduce the incidence of anthracnose symptoms on mango and papaya.

19.
Lett Appl Microbiol ; 72(1): 41-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32910828

RESUMO

The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 µg ml-1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Nisina/farmacologia , Óleos Voláteis/farmacologia , Rosmarinus/química , Alicyclobacillus/efeitos dos fármacos , Citrus sinensis
20.
Crit Rev Food Sci Nutr ; 61(22): 3771-3782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32811167

RESUMO

The elimination of microbial surface contaminants is one of the most important steps in Good Manufacturing Practices in order to maintain food safety. This is usually achieved by detergents and chemical sanitizers, although an increased demand exists for the use of natural products for disinfection purposes. Several natural substances present antibacterial activity against the main foodborne pathogens, demonstrating great potential for use in the food industry. Some difficulties such as high volatility, residual taste and/or degradation by exposure to harsh processing conditions have been reported. Nanoparticle encapsulation appears as a strategy to protect bioactive compounds, maintaining their antimicrobial activity and providing controlled release as well. This article presents the potential of natural antimicrobials and their combination with nanotechnological strategies as an alternative for food surface disinfection and prevent microbial biofilm formation.


Assuntos
Anti-Infecciosos , Biofilmes/efeitos dos fármacos , Desinfecção , Microbiologia de Alimentos , Nanotecnologia , Anti-Infecciosos/farmacologia , Indústria de Processamento de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA