Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443412

RESUMO

Palmarosa essential oil (PEO) is an alternative to synthetic fungicides to control the contamination by food-deteriorating fungi, such as Aspergillus nomius. Nonetheless, the low long-term stability and volatility hamper its utilization. Thus, this study aimed to develop nanostructured lipid carriers (NLCs) containing PEO to improve its stability and consequently prolong the activity against A. nomius. A mixture design was applied to find the best preparation conditions for antifungal activity. The characterization analyses included size measurements, zeta potential (ζ-potential), entrapment efficiency (EE), and antifungal activity (by inhibition of mycelial growth (IMG) and/or in situ test (pre-contaminated Brazil nuts) tests). The nanocarriers presented particle sizes smaller than 300 nm, homogeneous size distribution, ζ-potential of -25.19 to -41.81 mV, and EE between 73.6 and 100%. The formulations F5 and F10 showed the highest IMG value (98.75%). Based on the regression model, three optimized formulations (OFs) were tested for antifungal activity (IMG and in situ test), which showed 100% of inhibition and prevented the deterioration of Brazil nuts by A. nomius. The preliminary stability test showed the maintenance of antifungal activity and physicochemical characteristics for 90 days. These results suggest a promising system as a biofungicide against A. nomius.


Assuntos
Aspergillus/efeitos dos fármacos , Cymbopogon/química , Portadores de Fármacos/química , Nanoestruturas/química , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia , Bertholletia/microbiologia , Composição de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
2.
Future Microbiol ; 15: 21-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043361

RESUMO

Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.


Assuntos
Antifúngicos/farmacologia , Chalconas/farmacologia , Paracoccidioides/efeitos dos fármacos , Animais , Linhagem Celular , Chalconas/química , Emulsões/farmacologia , Fibroblastos/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Modelos Animais , Nanopartículas , Paracoccidioidomicose/microbiologia , Peixe-Zebra
3.
Int J Nanomedicine ; 15: 10481-10497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33402821

RESUMO

PURPOSE: Vulvovaginal candidiasis (VVC) is an opportunistic fungal infection that adversely affects a woman's health, due to unpleasant symptoms, therapeutic challenges, and the emergence of resistant strains. The association of natural products and nanotechnology is important to improve the antifungal potential of medicinal plants. We aimed to evaluate the in vitro and in vivo anti-Candida albicans activity of unloaded (EO) and loaded (ME+EO) essential oil of Cymbopogon nardus in the microemulsion (ME). METHODS: The chemical analysis of the EO was performed by gas chromatography-mass spectrometry. The ME and ME+EO were characterized by scattering, zeta potential, polarized light microscopy, rheological assays, mucoadhesiveness and transmission electronic microscopy. The in vitro antifungal activity of the EO and ME+EO were evaluated by microdilution technique. The toxicity of EO and ME+EO was analyzed on human cell line HaCat and using alternative model assay with Artemia salina. The experimental in vivo VVC was performed in female mice (C57BL/6). RESULTS: The main compounds of the EO were found to be citronellal, geranial, geraniol, citronellol, and neral. The formulations exhibited suitable size, homogeneity, negative charge, isotropic behavior, highly organized structure, and pseudoplastic behavior, for vaginal application. TEM photomicrographs showed possible EO droplets inside the spherical structures. The EO, when loaded into the ME, exhibited an improvement in its antifungal action against C. albicans. The EO was not toxic against brine shrimp nauplii. An in vivo VVC assay showed that the use of the ME significantly improved the action of the EO, since only the ME+EO promoted the eradication of the fungal vaginal infection on the third day of treatment. CONCLUSION: The EO and ME+EO are promising alternatives for the control of fungal infections caused by C. albicans, once the use of nanotechnology significantly improved the antifungal action of the EO, especially in an in vivo model of VVC.


Assuntos
Candida albicans/efeitos dos fármacos , Cymbopogon/química , Emulsões/química , Óleos Voláteis/farmacologia , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Artemia/efeitos dos fármacos , Ergosterol/farmacologia , Feminino , Células HaCaT , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Reologia , Eletricidade Estática , Testes de Toxicidade
4.
Front Microbiol ; 8: 1048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659880

RESUMO

Dodecyl protocatechuate (dodecyl) is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid) that possesses anti-oxidant and antifungal properties. Nanostructured lipid systems (NLS) can potentiate the action of many antifungal agents, reducing the required dose and side effects by improving their activity. This work aimed to evaluate dodecyl protocatechuate loaded into a NLS (NLS+dodecyl) as a strategy for the treatment of Paracoccidioides brasiliensis and P. lutzii in vitro. Antifungal activity against P. brasiliensis and P. lutzii was evaluated using the microdilution technique. NLS+dodecyl showed high antifungal activity with a minimum inhibitory concentration ranging from 0.06 to 0.03 µg/mL; 4- to 16-fold higher than that of free dodecyl. NLS+dodecyl was able to inhibit fungal adhesion of the extracellular artificial matrix proteins (laminin and fibronectin), resulting in 82.4 and 81% inhibition, respectively, an increase of 8-17% compared with free dodecyl. These findings corroborate previous results demonstrating 65 and 74% inhibition of fungal adhesion in pulmonary fibroblast cells by dodecyl and NLS+dodecyl, respectively, representing a 9% increase in inhibition for NLS+dodecyl. Subsequently, cytotoxicity was evaluated using the 0.4% sulforhodamine B assay. NLS+dodecyl did not exhibit cytotoxicity in MRC5 (human pneumocyte) and HepG2 (human hepatic carcinoma) cells, thus increasing the selectivity index for NLS+dodecyl. In addition, cytotoxicity was evaluated in vivo using the Caenorhabditis elegans model; neither dodecyl nor NLS+dodecyl exhibited any toxic effects. Taken together, these results suggest that NLS can be used as a strategy to improve the activity of dodecyl against P. brasiliensis and P. lutzii because it improves antifungal activity, increases the inhibition of fungal adhesion in lung cells and the extracellular matrix in vitro, and does not exhibit any toxicity both in vitro and in vivo.

5.
Int J Mol Sci ; 17(5)2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27196901

RESUMO

Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin(®) HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from -0.00690 ± 0.0896 to -8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC(®) CCL-81), J774A.1 (ATCC(®) TIB-67), and MRC-5 (ATCC(®) CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.


Assuntos
Antituberculosos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/química , Linhagem Celular , Chlorocebus aethiops , Complexos de Coordenação/química , Humanos , Lipídeos/química , Camundongos , Testes de Sensibilidade Microbiana/métodos , Nanoestruturas/química , Tamanho da Partícula , Tuberculose , Células Vero
6.
Molecules ; 20(12): 22534-45, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694337

RESUMO

The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX2(INH)2]·nH2O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij(®) 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC(®) 25923 and Escherichia coli ATCC(®) 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC(®) CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 µg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 µg/mL, respectively) and S. aureus (MICs 250, 500 and 125 µg/mL, respectively). The loaded compounds were less toxic against the Vero cell line, especially compound 1 (IC50 from 109.5 to 319.3 µg/mL). The compound 2- and 3-loaded MEs displayed the best SI for E. coli and S. aureus, respectively. These results indicated that the Cu(II) complex-loaded MEs were considerably more selective than the free compounds, in some cases, up to 40 times higher.


Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Cobre/química , Nanoestruturas/química , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA