Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Neuromuscul Disord ; 33(8): 692-696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429773

RESUMO

Mitochondrial DNA depletion syndrome type 11 (MTDPS11) is caused by pathogenic variants in MGME1 gene. We report a woman, 40-year-old, who presented slow progressive drop eyelid at 11-year-old with, learning difficulty and frequent falls. Phisical examination revealed: mild scoliosis, elbow hyperextensibility, flat feet, chronic progressive external ophthalmoplegia with upper eyelid ptosis, diffuse hypotonia, and weakness of arm abduction and neck flexion. Investigation evidenced mild serum creatine kinase increase and glucose intolerance; second-degree atrioventricular block; mild mixed-type respiratory disorder and atrophy and granular appearance of the retinal pigment epithelium. Brain magnetic resonance showed cerebellar atrophy. Muscle biopsy was compatible with mitochondrial myopathy. Genetic panel revealed a homozygous pathogenic variant in the MGME1 gene, consistent with MTDPS11 (c.862C>T; p.Gln288*). This case of MTDPS11 can contribute to the phenotypic characterization of this ultra-rare mitochondrial disorder, presenting milder respiratory and nutritional involvement than the previously reported cases, with possible additional features.


Assuntos
DNA Mitocondrial , Oftalmoplegia Externa Progressiva Crônica , Humanos , DNA Mitocondrial/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Fenótipo , Homozigoto , Atrofia , Exodesoxirribonucleases/genética
2.
J Bioenerg Biomembr ; 53(5): 525-539, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347214

RESUMO

S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases, particularly glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies, as well as in some hepatic mtDNA depletion syndromes, whose pathogenesis of liver dysfunction is still poorly established. Therefore, in the present work, we investigated the effects of S-adenosylmethionine (AdoMet) on mitochondrial functions and redox homeostasis in rat liver. AdoMet decreased mitochondrial membrane potential and Ca2+ retention capacity, and these effects were fully prevented by cyclosporin A and ADP, indicating mitochondrial permeability transition (mPT) induction. It was also verified that the thiol-alkylating agent NEM prevented AdoMet-induced ΔΨm dissipation, implying a role for thiol oxidation in the mPT pore opening. AdoMet also increased ROS production and provoked protein and lipid oxidation. Furthermore, AdoMet reduced GSH levels and the activities of aconitase and α-ketoglutarate dehydrogenase. Free radical scavengers attenuated AdoMet effects on lipid peroxidation and GSH levels, supporting a role of ROS in these effects. It is therefore presumed that disturbance of mitochondrial functions associated with mPT and redox unbalance may represent relevant pathomechanisms of liver damage provoked by AdoMet in disorders in which this metabolite accumulates.


Assuntos
Fígado/patologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , S-Adenosilmetionina/efeitos adversos , Animais , Masculino , Permeabilidade , Ratos , Ratos Wistar
3.
Neurobiol Aging ; 73: 161-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359878

RESUMO

Accumulation of oxidative mitochondrial DNA (mtDNA) damage and impaired base excision repair (BER) in brains have been associated with Alzheimer's disease (AD). However, it is still not clear how these affect mtDNA stability, as reported levels of mtDNA mutations in AD are conflicting. Thus, we investigated whether alterations in BER correlate with mtDNA instability in AD using postmortem brain samples from cognitively normal AD subjects and individuals who show neuropathological features of AD, but remained cognitively normal (high-pathology control). To date, no data on DNA repair and mtDNA stability are available for these individuals. BER activities, mtDNA mutations, and mtDNA copy number were measured in the nuclear and mitochondrial extracts. Significantly lower uracil DNA glycosylase activity was detected in nuclear and mitochondrial extracts from AD subjects, while apurinic/apyrimidinic endonuclease activity was similar in all groups. Although mtDNA mutation frequency was similar in all groups, mtDNA copy number was significantly decreased in the temporal cortex of AD brains but not of high-pathology control subjects. Our results show that lower mitochondrial uracil DNA glycosylase activity does not result in increased mutagenesis, but rather in depletion of mtDNA in early-affected brain regions during AD development.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Reparo do DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Feminino , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estresse Oxidativo/genética , Lobo Temporal/metabolismo , Uracila-DNA Glicosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA