Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sci Rep ; 14(1): 15421, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965297

RESUMO

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Assuntos
Aedes , Imidazóis , Inseticidas , Larva , Aedes/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Imidazóis/toxicidade , Imidazóis/farmacologia , Inseticidas/toxicidade , Inseticidas/farmacologia , Humanos , Mosquitos Vetores/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Controle de Mosquitos/métodos
2.
BMC Public Health ; 23(1): 1730, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670248

RESUMO

BACKGROUND: Aedes aegypti, the vector of arboviral diseases such as dengue and Zika virus infections, is difficult to control. Effective interventions must be practicable, comprehensive, and sustained. There is evidence that community participation can enhance mosquito control. Therefore, countries are encouraged to develop and integrate community-based approaches to mosquito control to mitigate Aedes-borne infectious diseases (ABIDs). Health professionals must understand the contexts motivating individuals' behaviour to improve community participation and promote behavioural change. Therefore, this study aimed to determine how contexts shaped individuals' protective behaviours related to ABIDs in Curaçao. METHODS: From April 2019 to September 2020, a multi-method qualitative study applying seven (n = 54) focus group discussions and twenty-five in-depth interviews with locals was performed in CuraÒ«ao. The study was designed based on the Health Belief Model (HBM). Two cycles of inductive and deductive coding were employed, and Nvivo software was used to manage and analyse the data. RESULTS: In this study, low media coverage (external cue to action) and limited experience with the symptoms of ABIDs (internal cue to action) were linked with a low perceived susceptibility and severity of ABIDs (low perceived threat). The low perceived threat was linked with reduced health-seeking behaviour (HSB) to prevent and control ABIDs. We also found that the perceived barriers outweigh the perceived benefits of ABID prevention and control interventions, obstructing HSB. On the one hand, insufficient knowledge reduced self-efficacy but contrary to expected, having good knowledge did not promote HSB. Lastly, we found that our participants believe that they are responsible for preventing ABIDs (internal locus of control) but at the same time indicated that their success depends on the efforts of the community and the health system (external locus of control). CONCLUSIONS: This study used the HBM to explain individual changes in HSB concerning ABIDs prevention and control in Curaçao. We can conclude that the perceived threat (perceived susceptibility and severity) and perceived barriers played an essential role in changing HSB. Health professionals must consider these two concepts' implications when designing a bottom-up approach for ABIDs control; otherwise, community participation will remain minimal.


Assuntos
Aedes , Doenças Transmissíveis , Infecção por Zika virus , Zika virus , Humanos , Animais , Curaçao , Mosquitos Vetores , Comportamentos Relacionados com a Saúde
3.
Parasit Vectors ; 16(1): 273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559134

RESUMO

BACKGROUND: The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin's receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS: The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS: Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS: Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation.


Assuntos
Bacillus , Toxinas Bacterianas , Culex , Animais , Feminino , Toxinas Bacterianas/metabolismo , Culex/metabolismo , Lipídeos , Larva/genética
4.
J Vector Ecol ; 48(1): 12-18, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255355

RESUMO

Vector control has been an essential strategy in Brazil to manage vector-borne diseases, and the use of insecticides plays an important role in this effort. Pyriproxyfen (PPF) has become a common insect growth regulator used to control juvenile stages of mosquitoes by disturbing their growth and development. This study assesses the susceptibility and resistance status of Brazilian Ae. aegypti populations that previously showed low resistance levels to PPF. Eggs of Ae. aegypti were collected from six cities located in the northeast states of Ceará (Quixadá, Icó, and Juazeiro do Norte), and Bahia (Itabuna, Brumado, and Serrinha). We used the Ae. aegypti Rockefeller strain as an experimental control and a strain known to be susceptible to insecticides. Inhibition of emergence rates by 50% of Ae. aegypti populations varied from 0.0098-0.046 µg/L. Mosquitoes from Icó, Serrinha, and Brumado showed low resistance levels [resistance ratio (RR50) = 2.33, 4.52, and 4.83, respectively], whereas moderate levels of resistance were detected in populations from Juazeiro do Norte (RR50=5.83) and Itabuna (RR50=7.88). Aedes aegypti collected from the Quixadá population showed a high resistance level to pyriproxyfen (RR50=11). The evolution of resistance in Brazilian Ae. aegypti populations to PPF can compromise vector control efforts. Continuous monitoring of insecticide resistance in Ae. aegypti is essential for making timely management decisions for effective vector control and management.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Brasil/epidemiologia , Hormônios Juvenis/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia
5.
Parasit Vectors ; 16(1): 159, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149611

RESUMO

BACKGROUND: Low-income urban communities in the tropics often lack sanitary infrastructure and are overcrowded, favoring Aedes aegypti proliferation and arboviral transmission. However, as Ae. aegypti density is not spatially homogeneous, understanding the role of specific environmental characteristics in determining vector distribution is critical for planning control interventions. The objectives of this study were to identify the main habitat types for Ae. Aegypti, assess their spatial densities to identify major hotspots of arbovirus transmission over time and investigate underlying factors in a low-income urban community in Salvador, Brazil. We also tested the field-collected mosquitoes for arboviruses. METHODS: A series of four entomological and socio-environmental surveys was conducted in a random sample of 149 households and their surroundings between September 2019 and April 2021. The surveys included searching for potential breeding sites (water-containing habitats) and for Ae. aegypti immatures in them, capturing adult mosquitoes and installing ovitraps. The spatial distribution of Ae. aegypti density indices were plotted using kernel density-ratio maps, and the spatial autocorrelation was assessed for each index. Visual differences on the spatial distribution of the Ae. aegypti hotspots were compared over time. The association of entomological findings with socio-ecological characteristics was examined. Pools of female Ae. aegypti were tested for dengue, Zika and chikungunya virus infection. RESULTS: Overall, 316 potential breeding sites were found within the study households and 186 in the surrounding public spaces. Of these, 18 (5.7%) and 7 (3.7%) harbored a total of 595 and 283 Ae. aegypti immatures, respectively. The most productive breeding sites were water storage containers within the households and puddles and waste materials in public areas. Potential breeding sites without cover, surrounded by vegetation and containing organic matter were significantly associated with the presence of immatures, as were households that had water storage containers. None of the entomological indices, whether based on immatures, eggs or adults, detected a consistent pattern of vector clustering in the same areas over time. All the mosquito pools were negative for the tested arboviruses. CONCLUSIONS: This low-income community displayed high diversity of Ae. aegypti habitats and a high degree of heterogeneity of vector abundance in both space and time, a scenario that likely reflects other low-income communities. Improving basic sanitation in low-income urban communities through the regular water supply, proper management of solid wastes and drainage may reduce water storage and the formation of puddles, minimizing opportunities for Ae. aegypti proliferation in such settings.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Feminino , Brasil/epidemiologia , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Água
6.
Trop Med Infect Dis ; 8(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36977163

RESUMO

Wolbachia infection in Anopheles albimanus mosquitoes can render mosquitoes less capable of spreading malaria. We developed and analyzed a mechanistic compartmental ordinary differential equation model to evaluate the effectiveness of Wolbachia-based vector control strategies among wild Anopheles mosquitoes in Haiti. The model tracks the mosquito life stages, including egg, larva, and adult (male and female). It also accounts for critical biological effects, such as the maternal transmission of Wolbachia through infected females and cytoplasmic incompatibility, which effectively sterilizes uninfected females when they mate with infected males. We derive and interpret dimensionless numbers, including the basic reproductive number and next-generation numbers. The proposed system presents a backward bifurcation, which indicates a threshold infection that needs to be exceeded to establish a stable Wolbachia infection. The sensitivity analysis ranks the relative importance of the epidemiological parameters at baseline. We simulate different intervention scenarios, including prerelease mitigation using larviciding and thermal fogging before the release, multiple releases of infected populations, and different release times of the year. Our simulations show that the most efficient approach to establishing Wolbachia is to release all the infected mosquitoes immediately after the prerelease mitigation process. Moreover, the model predicts that it is more efficient to release during the dry season than the wet season.

7.
J Fungi (Basel) ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36012816

RESUMO

Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults' attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.

8.
J Am Mosq Control Assoc ; 38(2): 113-117, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588174

RESUMO

Most residences in the United States Virgin Islands (USVI) rely on household rainwater-catchment systems and subterranean cisterns for long-term water storage that may provide suitable habitats for mosquitoes of public health relevance. We conducted a household cistern survey (n = 164) on the islands of St. Croix, St. John, and St. Thomas in 2019. The survey revealed that 45.7% (95% CI: 38.3-53.4%) of cisterns contained mosquitoes (adult and/or immature mosquitoes). Aedes aegypti, a vector of chikungunya, dengue, and Zika viruses in the USVI, was found in 27.4% (95% CI: 21.2-34.7%) of cisterns and accounted for 83.3% of the total mosquitoes identified in the study. The odds of detecting mosquitoes in a cistern were 5.45 times higher at locations where the residents reported that they had observed adult mosquitoes coming out of their cisterns (95% CI: 2.25-14.21), suggesting that vector control personnel should consider resident complaints about mosquitoes in their cistern as valid and likely reliable self-assessments. Resident mosquito management practices in cisterns did not correspond with decreased odds of mosquito detection. We conclude that cisterns in the USVI commonly provide habitat for immature and adult Ae. aegypti, which may decrease the effectiveness of area-wide mosquito control strategies. Additional studies are necessary to evaluate the importance of these cisterns as they relate to mosquito production and arbovirus transmission risk, and to assess physical and chemical control methods.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Estudos Transversais , Ecossistema , Mosquitos Vetores , Ilhas Virgens Americanas
9.
Behav Sci (Basel) ; 12(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447666

RESUMO

Knowledge of dengue fever and perceived self-efficacy toward dengue prevention does not necessarily translate to the uptake of mosquito control measures. Understanding how these factors (knowledge and self-efficacy) influence mosquito control measures in Mexico is limited. Our study sought to bridge this knowledge gap by assessing individual-level variables that affect the use of mosquito control measures. A cross-sectional survey with 623 participants was administered online in Mexico from April to July 2021. Multiple linear regression and multiple logistic regression models were used to explore factors that predicted mosquito control scale and odds of taking measures to control mosquitoes in the previous year, respectively. Self-efficacy (ß = 0.323, p-value = < 0.0001) and knowledge about dengue reduction scale (ß = 0.316, p-value =< 0.0001) were the most important predictors of mosquito control scale. The linear regression model explained 24.9% of the mosquito control scale variance. Increasing age (OR = 1.064, p-value =< 0.0001) and self-efficacy (OR = 1.020, p-value = 0.0024) were both associated with an increase in the odds of taking measures against mosquitoes in the previous year. There is a potential to increase mosquito control awareness and practices through the increase in knowledge about mosquito reduction and self-efficacy in Mexico.

10.
J Am Mosq Control Assoc ; 38(1): 19-23, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276724

RESUMO

We monitored trap captures of Culex quinquefasciatus using an interrupted time-series study to determine if autocidal gravid ovitraps (AGO traps) were useful to control the population of this mosquito species in a community in southern Puerto Rico. Data for this report came from a previous study in which we used mass trapping to control Aedes aegypti, resulting in a significant 79% reduction in numbers of this species. The AGO traps used to monitor and control Ae. aegypti also captured numerous Cx. quinquefasciatus. Culex quinquefasciatus was monitored in surveillance AGO traps from October 2011 to February 2013, followed by a mosquito control intervention from February 2013 to June 2014. Optimal captures of this mosquito occurred on the 2nd wk after the traps were set or serviced, which happened every 8 wk. Changes in collection numbers of Cx. quinquefasciatus were positively correlated with rainfall and showed oscillations every 8 wk, as revealed by sample autocorrelation analyses. Culex quinquefasciatus was attracted to and captured by AGO traps, so mass trapping caused a significant but moderate reduction of the local population (31.2%) in comparison with previous results for Ae. aegypti, possibly resulting from female mosquitoes flying in from outside of the study area and decreased attraction to the traps past the 2nd wk of trap servicing. Because Ae. aegypti and Cx. quinquefasciatus are frequently established in urban areas, mass trapping to control the former has some impact on Cx. quinquefasciatus. Control of the latter could be improved by locating and treating its aquatic habitats within and around the community.


Assuntos
Aedes , Culex , Animais , Ecossistema , Feminino , Controle de Mosquitos/métodos , Porto Rico
11.
Trop Med Int Health ; 27(3): 300-309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118778

RESUMO

OBJECTIVE: To investigate the presence and abundance of mosquito species in containers found in different types of cemeteries in Puerto Rico to assess their importance and make control recommendations. METHODS: We conducted surveys of containers with water in 16 cemeteries in southeastern Puerto Rico to detect the presence of larvae and pupae of Aedes aegypti and other mosquitoes; to identify the most common and productive containers and to study their variation in relation to the type of cemetery. RESULTS: The most common containers with water were flowerpots, followed in abundance by a variety of discarded containers and open tombs. We found a positive relationship between density of containers with water and rainfall. There was a rich community of mosquito species developing in containers of the inspected cemeteries: nine mosquito species belonging to four genera with Ae. aegypti and Ae. mediovittatus being the most frequent and abundant. We sampled 13 cement-type cemeteries, 2 mixed and only 1 lawn cemetery, consequently, we could not draw any conclusion regarding container productivity and cemetery type. CONCLUSIONS: Surveyed cemeteries were important sources of Ae. aegypti and other mosquitoes in flowerpots, discarded containers and open tombs. We recommend conducting further studies to establish how frequently inspections should occur; and mosquito control by emptying aquatic habitats and larviciding to reduce mosquito productivity and protect workers and visitors from mosquito bites and possible transmission of arboviruses.


Assuntos
Aedes , Animais , Cemitérios , Ecossistema , Humanos , Larva , Controle de Mosquitos , Mosquitos Vetores , Porto Rico , Pupa , Água
12.
Bol. malariol. salud ambient ; 62(4): 663-669, 2022.
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1411936

RESUMO

La ineficacia de las estrategias actuales para el control químico de los mosquitos vectores plantea la necesidad de desarrollar enfoques novedosos, entre estos están las estrategias genéticas para reducir las poblaciones de mosquitos vectores o sustituirlos por aquellos que no son capaces de transmitir patógenos, esto se logra a través de herramientas moleculares que permiten la manipulación y transgénesis de genes. Las secuencias del genoma de los mosquitos y las bases de datos de marcadores de secuencias expresadas asociadas permiten investigaciones a gran escala para proporcionar nuevos conocimientos sobre las vías evolutivas, bioquímicas, genéticas, metabólicas y fisiológicas. Además, la genómica comparativa revela las bases de los mecanismos evolutivos con especial atención a las interacciones específicas entre vectores y patógenos. Se ha desarrollado tecnología de transgénesis para el mosquito de la fiebre amarilla y dengue, Aedes aegypti. Se ha logrado integración exitosa de ADN exógeno en la línea germinal de este mosquito con los elementos transponibles. La disponibilidad de múltiples elementos y genes marcadores proporciona un poderoso conjunto de herramientas para investigar las propiedades biológicas básicas de este insecto vector, así como los materiales para desarrollar nuevas estrategias de control genético de poblaciones de mosquitos basadas en la técnica del insecto estéril. Una de estas estrategias consiste en liberar a la población machos esterilizados por radiación; otro, de integrar un gen letal dominante bajo el control de un promotor específico en hembras inmaduras. El uso de esta técnica de modificación genética constituirá una herramienta importante para el manejo integrado de vectores(AU)


The ineffectiveness of current strategies for the chemical control of vector mosquitoes raises the need to develop novel approaches, among these are genetic strategies to reduce populations of vector mosquitoes or replace them with those that are not capable of transmitting pathogens, this is achieved through molecular tools that allow the manipulation and transgenesis of genes. Mosquito genome sequences and associated expressed sequence marker databases enable large-scale investigations to provide new insights into evolutionary, biochemical, genetic, metabolic, and physiological pathways. Furthermore, comparative genomics reveals the basis of evolutionary mechanisms with special attention to the specific interactions between vectors and pathogens. Transgenesis technology has been developed for the yellow fever and dengue mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germ line of this mosquito with the transposable elements has been achieved. The availability of multiple elements and marker genes provides a powerful set of tools to investigate the basic biological properties of this insect vector, as well as the materials to develop new strategies for genetic control of mosquito populations based on the sterile insect technique. One of this strategy is to release radiation-sterilized males into the population; another, to integrate a dominant lethal gene under the control of a specific promoter in immature females. The use of this genetic modification technique will constitute an important tool for the integrated management of vectors(AU)


Assuntos
Animais , Arbovírus , Engenharia Genética , Técnicas de Transferência de Genes , Aedes , Infecções por Arbovirus , Estratégias de Saúde , Mosquitos Vetores , Genética
13.
Rev. salud pública ; Rev. salud pública;23(3): 1-mayo-jun. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1424384

RESUMO

RESUMEN Objetivo Evaluar el efecto larvicida en éter de petróleo de los extractos de Allium sativum (ajo) y Annona muricata (guanábana) sobre larvas en IV estadio de Aedes aegypti en condiciones de laboratorio. Métodos Se realizaron diferentes bioensayos (tratamientos) en 6 concentraciones para Annona muricata y 7 concentraciones de Allium sativum, con cuatro repeticiones y un control. Se tuvo lecturas de mortalidad a las 2, 12, 24, 36 y 48 horas. Se validaron los datos obtenidos estadísticamente (corrección de Abbott y Análisis ANOVA). Además, se determinaron las concentraciones y tiempos letales para ambos extractos con un análisis Probit. Resultados Se obtuvo que, en un periodo de 48 horas, el tratamiento de 500 ppm del extracto de Annona muricata logró una mortalidad del 97%, mientras que el tratamiento de 2000 ppm con Allium sativum logró alcanzar una mortalidad del 85%. El tiempo letal 50 (50% de mortalidad) para Annona muricata, se obtuvo en el tratamiento de 200 ppm antes de 24 horas, para el caso de Allium sativum fue en el tratamiento de 1200 ppm antes de 48 horas. Para el tiempo letal 90 (90% de mortalidad) para Annona muricata, se obtuvo en el tratamiento de 400 ppm antes de 40 horas. Para el caso de Allium sativum, el tiempo letal 90 no fue posible obtenerlo experimentalmente. Se determinó por medio de un modelo matemático lineal, que dio como resultado 51 horas. Conclusión Ambas especies poseen efecto larvicida. Sin embargo, el extracto más eficiente y efectivo como larvicida es el de Annona muricata, lo que permite dar una alternativa natural, viable, económica y biodegradable para el control de larvas de esta especie.


ABSTRACT Objective To evaluate the larvicidal effect in petroleum ether of the extracts of Allium sativum (garlic) and Annona muricata (soursop) on larvae in stage IV of Aedes aegypti under laboratory conditions. Methods Different bioassays (treatments) were performed in 6 factors for Annona muricata and 7 concentrations of Allium sativum, with four replications and one control. Mortality readings were taken at 2, 12, 24, 36 and 48 hours. The data obtained statistically (Abbott correction and ANOVA analysis) were validated, in addition, the concentrations and lethal times for both extracts were determined with a Probit analysis. Results It was obtained that, in a 48 hour period, the treatment of 500 ppm of the extract of Annona muricata resulted in a mortality of 97%, while the treatment of 2000 ppm with Allium sativum reached a mortality of 85%. The lethal time 50 (50% mortality) for Annona muricata, was obtained in the treatment of 200 ppm within 24 hours, in the case of Allium sativum it was in the treatment of 1200 ppm before 48 hours. For the lethal time 90 for Annona muricata, obtain the treatment of 400 ppm before 40 hours, for the case of Allium sativum, the lethal time 90 (90% mortality) could not be obtained experimentally, it was determined by means of a linear mathematical model, resulting in 51 hours. Conclusion Both species affected larvicidal effect. However, the most efficient and effective extract as a larvicide is that of Annona muricata, which allows giving a natural, viable, economical and biodegradable alternative for the control of larvae of this species.

14.
Parasit Vectors ; 14(1): 272, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022935

RESUMO

BACKGROUND: Botanical substances such as essential oils (EOs) have demonstrated insecticidal properties and are a valid option for vector control. However, free EOs are unreliable as mosquito larvicides due their easy degradation by environmental exposure to ultraviolet light and higher temperatures. Here, we assessed the efficacy of a mosquito larvicide based on orange oil in a yeast-based delivery system against Aedes aegypti strains with different resistance status towards chemical neurotoxic insecticides. This larvicide preparation was physicochemically characterized in a previous report. METHODS: Larvae of four Ae. aegypti strains from different regions of Brazil and different resistance profiles for deltamethrin (pyrethroid) and temephos (organophosphate) were tested against yeast-encapsulated orange oil (YEOO) in laboratory conditions for measurement of LC50 and LC90 values. The same assays were performed with the Belo Horizonte strain under environmental conditions (natural light and temperature). The resistance profiles of these strains were compared to the Rockefeller reference strain in all conditions. RESULTS: YEOO was found to be a highly active larvicide (LC50 < 50 mg/L) against all Ae. aegypti strains tested in both laboratory conditions (LC50 = 8.1-24.7 mg/L) and environmental conditions with natural light and temperature fluctuation (LC50 = 20.0-49.9 mg/L). Moreover, all strains were considered susceptible (RR < 5) to YEOO, considering resistance ratios calculated based on the Rockefeller strain. The resistance ratios were only higher than 2.5 for LC90-95 of Belo Horizonte in the laboratory, probably due the higher heterogeneity associated with older egg papers (> 5 months). CONCLUSION: YEOO demonstrates high larvicidal activity against Ae. aegypti strains with resistant phenotypes for deltamethrin (PY) and temephos (OP). This larvicidal activity suggests the potential for the development of YEOO as an alternative intervention to synthetic insecticides in integrated vector management programs, for populations with resistance to commonly used insecticides.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos de Plantas/farmacologia , Saccharomyces cerevisiae/química , Aedes/classificação , Animais , Brasil , Controle de Mosquitos/métodos , Óleos Voláteis/farmacologia , Piretrinas/farmacologia , Temefós/farmacologia
15.
Environ Pollut ; 284: 117130, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33910136

RESUMO

Despite being effective in controlling mosquito larvae and a few other target organisms, the application of insecticides into aquatic systems may cause unintended alterations to the physiology or behavioral responses of several aquatic non-target organisms, which can ultimately lead to their death. Here, we firstly evaluated whether the susceptibility of the giant water bug, Belostoma anurum (Hemiptera: Belostomatidae), a predator of mosquito larvae, to pyriproxyfen would be similar to that of its potential prey, larvae of Aedes aegypti (Diptera: Culicidae). Secondly, we recorded the nominal concentrations of pyriproxyfen in water and evaluated whether sublethal exposures would lead to physiological or behavioral alterations on the B. anurum nymphs. We characterized the activities of three major families of detoxification enzymes (i.e., cytochrome P450 monooxygenases, glutathione-S-transferase, and general esterases) and further evaluated the abilities of pyriproxyfen sublethally-exposed B. anurum to prey upon A. aegypti larvae at different prey densities. Our findings revealed that nominal pyriproxyfen concentration significantly decreased (approximately 50%) over the first 24 h. Furthermore, when applied at the concentration of 10 µg a.i./L, pyriproxyfen was approximately four times more toxic to A. aegypti larvae (LT50 = 48 h) than to B. anurum nymphs (LT50 = 192 h). Interestingly, the pyriproxyfen sublethally-exposed (2.5 µg a.i./L) B. anurum nymphs exhibited reduced enzyme activities (cytochrome P450 monooxygenases) involved in detoxication processes and preyed significantly less on A. aegypti larvae when compared to unexposed predators. Collectively, our findings demonstrate that mortality-based pyriproxyfen risk assessments are not always protective of aquatic non-target organisms.


Assuntos
Aedes , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Larva , Controle de Mosquitos , Piridinas/toxicidade
16.
Parasit Vectors ; 13(1): 352, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665032

RESUMO

BACKGROUND: Aedes aegypti and Culex quinquefasciatus are the main urban vectors of arthropod-borne viruses causing human disease, including dengue, Zika, or West Nile. Although key to disease prevention, urban-mosquito control has met only limited success. Alternative vector-control tactics are therefore being developed and tested, often using entomological endpoints to measure impact. Here, we test one promising alternative and assess how three such endpoints perform at measuring its effects. METHODS: We conducted a 16-month, two-arm, cluster-randomized controlled trial (CRCT) of mosquito-disseminated pyriproxyfen (MD-PPF) in central-western Brazil. We used three entomological endpoints: adult-mosquito density as directly measured by active aspiration of adult mosquitoes, and egg-trap-based indices of female Aedes presence (proportion of positive egg-traps) and possibly abundance (number of eggs per egg-trap). Using generalized linear mixed models, we estimated MD-PPF effects on these endpoints while accounting for the non-independence of repeated observations and for intervention-unrelated sources of spatial-temporal variation. RESULTS: On average, MD-PPF reduced adult-mosquito density by 66.3% (95% confidence interval, 95% CI: 47.3-78.4%); Cx. quinquefasciatus density fell by 55.5% (95% CI: 21.1-74.8%), and Ae. aegypti density by 60.0% (95% CI: 28.7-77.5%). In contrast, MD-PPF had no measurable effect on either Aedes egg counts or egg-trap positivity, both of which decreased somewhat in the intervention cluster but also in the control cluster. Egg-trap data, therefore, failed to reflect the 60.0% mean reduction of adult Aedes density associated with MD-PPF deployment. CONCLUSIONS: Our results suggest that the widely used egg-trap-based monitoring may poorly measure the impact of Aedes control; even if more costly, direct monitoring of the adult mosquito population is likely to provide a much more realistic and informative picture of intervention effects. In our CRCT, MD-PPF reduced adult-mosquito density by 66.3% in a medium-sized, spatially non-isolated, tropical urban neighborhood. Broader-scale trials will be necessary to measure MD-PPF impact on arboviral-disease transmission.


Assuntos
Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Piridinas/farmacologia , Aedes/efeitos dos fármacos , Animais , Brasil , Culex/efeitos dos fármacos , Humanos , Inseticidas/farmacologia
17.
Virol J ; 17(1): 93, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631404

RESUMO

BACKGROUND: More than 3 years since the last Zika virus (ZIKV) outbreak in Brazil, researchers are still deciphering the molecular mechanisms of neurovirulence and vertical transmission, as well as the best way to control spread of ZIKV, a flavivirus. The use of pesticides was the main strategy of mosquito control during the last ZIKV outbreak. METHODS: We used vesicular stomatitis virus (VSV) tagged with green fluorescent protein (GFP) as our prototypical virus to study the impact of insecticide pyriproxyfen (PPF). VZV-GFP infected and uninfected Jurkat, HeLa and trophoblast cells were treated with PPF and compared to untreated cells (control). Cell viability was determined by the MTT assay. Cell morphology, presence of extracellular vesicles (EVs), virus infection/GFP expression as well as active mitochondrial levels/localization were examined by confocal microscopy. RESULTS: PPF, which was used to control mosquito populations in Brazil prior to the ZIKV outbreak, enhances VSV replication and has cell membrane-altering properties in the presence of virus. PPF causes enhanced viral replication and formation of large EVs, loaded with virus as well as mitochondria. Treatment of trophoblasts or HeLa cells with increasing concentrations of PPF does not alter cell viability, however, it proportionately increases Jurkat cell viability. Increasing concentrations of PPF followed by VSV infection does not interfere with HeLa cell viability. Both Jurkats and trophoblasts show proportionately increased cell death with increased concentrations of PPF in the presence of virus. CONCLUSIONS: We hypothesize that PPF disrupts the lipid microenvironment of mammalian cells, thereby interfering with pathways of viral replication. PPF lowers viability of trophoblasts and Jurkats in the presence of VSV, implying that the combination renders immune system impairment in infected individuals as well as enhanced vulnerability of fetuses towards viral vertical transmission. We hypothesize that similar viruses such as ZIKV may be vertically transmitted via EV-to-cell contact when exposed to PPF, thereby bypassing immune detection. The impact of pesticides on viral replication must be fully investigated before large scale use in future outbreaks of mosquito borne viruses.


Assuntos
Infecções por Flavivirus/transmissão , Inseticidas/farmacologia , Piridinas/farmacologia , Vesiculovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Aedes/virologia , Animais , Brasil , Sobrevivência Celular/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Células Jurkat , Trofoblastos/efeitos dos fármacos , Trofoblastos/virologia , Virulência , Zika virus/efeitos dos fármacos
18.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220845

RESUMO

Given the continued high prevalence of mosquito-transmitted diseases, there is a clear need to develop novel disease and vector control strategies. Biopesticides of microbial origin represent a promising source of new approaches to target disease-transmitting mosquito populations. Here, we describe the development and characterization of a novel mosquito biopesticide, derived from an air-dried, nonlive preparation of the bacterium Chromobacterium sp. Panama (family: Neisseriaceae). This preparation rapidly and effectively kills the larvae of prominent mosquito vectors, including the dengue and Zika vector Aedes aegypti and the human malaria vector Anopheles gambiae During semi-field trials in Puerto Rico, we observed high efficacy of the biopesticide against field-derived A. aegypti populations, and against A. aegypti and Culex species larvae in natural breeding water, indicating the suitability of the biopesticide for use under more natural conditions. In addition to high efficacy, the nonlive Csp_P biopesticide has a low effective dose, a long shelf life, and high heat stability and can be incorporated into attractive larval baits, all of which are desirable characteristics for a biopesticide.IMPORTANCE We have developed a novel preparation to kill mosquitoes from an abundant soil bacterium, Chromobacterium sp. Panama. This preparation is an air-dried powder containing no live bacteria, and it can be incorporated into an attractive bait and fed directly to mosquito larvae. We demonstrate that the preparation has broad spectrum activity against the larval form of the mosquitoes responsible for the transmission of malaria and the dengue, chikungunya, yellow fever, West Nile, and Zika viruses, as well as mosquito larvae that are already resistant to commonly used mosquitocidal chemicals. Our preparation possesses many favorable traits: it kills at a low dosage, and it does not lose activity when exposed to high temperatures, all of which suggest that this preparation could eventually become an effective new tool for controlling mosquitoes and the diseases they spread.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Chromobacterium/química , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Aedes/genética , Animais , Anopheles/genética , Culex/genética , Larva/efeitos dos fármacos , Larva/genética , Porto Rico
19.
Acta Trop ; 205: 105398, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32068030

RESUMO

Mosquito-borne diseases affect millions of individuals worldwide; the area of endemic transmission has been increasing due to several factors linked to globalization, urban sprawl, and climate change. The Aedes aegypti mosquito plays a central role in the dissemination of dengue, Zika, chikungunya, and urban yellow fever. Current preventive measures include mosquito control programs; however, identifying high-risk areas for mosquito infestation over a large geographic region based only on field surveys is labor-intensive and time-consuming. Thus, the objective of this study was to assess the potential of remote satellite images (WorldView) for determining land features associated with Ae. aegypti adult infestations in São José do Rio Preto/SP, Brazil. We used data from 60 adult mosquito traps distributed along four summers; the remote sensing images were classified by land cover types using a supervised classification method. We modeled the number of Ae. aegypti using a Poisson probability distribution with a geostatistical approach. The models were constructed in a Bayesian context using the Integrated nested Laplace Approximations and Stochastic Partial Differential Equation method. We showed that an infestation of Ae. aegypti adult mosquitoes was positively associated with the presence of asbestos roofing and roof slabs. This may be related to several other factors, such as socioeconomic or environmental factors. The usage of asbestos roofing may be more prevalent in socioeconomically poor areas, while roof slabs may retain rainwater and contribute to the generation of temporary mosquito breeding sites. Although preliminary, our results demonstrate the utility of satellite remote sensing in identifying landscape differences in urban environments using a geostatistical approach, and indicated directions for future research. Further analyses including other variables, such as land surface temperature, may reveal more complex relationships between urban mosquito micro-habitats and land cover features.


Assuntos
Aedes/fisiologia , Distribuição Animal/fisiologia , Tecnologia de Sensoriamento Remoto , Astronave , Animais , Teorema de Bayes , Brasil , Mudança Climática , Humanos , Controle de Mosquitos , Estações do Ano , Temperatura
20.
Artigo em Inglês | MEDLINE | ID: mdl-31707089

RESUMO

Compounds having insecticidal activity can be used to control Aedes aegypti mosquitoes, a major worldwide vector, and several plants have a source of such molecules. A principal component analysis (PCA) was carried out to determine the criterion to select larvicidal metabolites. The insecticidal activity of seven selected metabolites by PCA was validated by determining its lethal concentrations 50 (LC50) by probit analysis. Six of the seven evaluated molecules presented LC50 values <100 ppm. The effects of these six molecules on acetylcholinesterase and the respiratory chain complexes of the mitochondria of Ae. aegypti were evaluated. Four metabolites presenting the highest inhibition effects on these targets were mixed in 11 different combinations, and the percentage of mortality of each mixture on Ae. aegypti larvae were determined. Secondary metabolites such as geranyl acetate, α-humulene, ß-caryophyllene, geraniol, nerol, and n-octanol presented LC50 values under 100 ppm (44, 41, 48, 84, 87, and 98 ppm, respectively), whereas 1,8-cineole presented a LC50 value of 183 ppm. We found that, geranyl acetate, α-humulene, ß-caryophyllene, nerol, n-octanol, and geraniol inhibited at least one of the six targets with an efficiency between 25 and 41%. Overall, the evaluation of the different mixtures revealed a synergistic effect between geranyl acetate and geraniol, and an antagonistic effect between α-humulene and ß-caryophyllene compounds.


Assuntos
Aedes/metabolismo , Inseticidas/toxicidade , Mitocôndrias/metabolismo , Controle de Mosquitos/métodos , Metabolismo Secundário , Acetatos/toxicidade , Monoterpenos Acíclicos/toxicidade , Animais , Sesquiterpenos Monocíclicos/toxicidade , Oxirredução , Sesquiterpenos Policíclicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA