Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mycoses ; 67(7): e13757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049157

RESUMO

BACKGROUND: Candida vulturna is an emerging pathogen belonging to the Metshnikowiaceae family together with Candida auris and Candida haemulonii species complex. Some strains of this species were reported to be resistant to several antifungal agents. OBJECTIVES: This study aims to address identification difficulties, evaluate antiungal susceptibilities and explore the molecular mechanisms of azole resistance of Candida vulturna. METHODS: We studied five C. vulturna clinical strains isolated in three Colombian cities. Identification was performed by phenotypical, proteomic and molecular methods. Antifungal susceptibility testing was performed following CLSI protocol. Its ERG11 genes were sequenced and a substitution was encountered in azole resistant isolates. To confirm the role of this substitution in the resistance phenotype, Saccharomyces cerevisiae strains with a chimeric ERG11 gene were created. RESULTS: Discrepancies in identification methods are highlighted. Sequencing confirmed the identification as C. vulturna. Antifungal susceptibility varied among strains, with four strains exhibiting reduced susceptibility to azoles and amphotericin B. ERG11 sequencing showed a point mutation (producing a P135S substitution) that was associated with the azole-resistant phenotype. CONCLUSIONS: This study contributes to the understanding of C. vulturna's identification challenges, its susceptibility patterns, and sheds light on its molecular mechanisms of azole resistance.


Assuntos
Antifúngicos , Azóis , Candida , Candidíase , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candida/classificação , Candida/isolamento & purificação , Candidíase/microbiologia , Humanos , Farmacorresistência Fúngica Múltipla/genética , Colômbia , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Mutação Puntual , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Análise de Sequência de DNA , Proteínas de Saccharomyces cerevisiae
2.
Front Nutr ; 11: 1398059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742021

RESUMO

Obesity, a chronic global health problem, is associated with an increase in various comorbidities, such as cardiovascular disease, type 2 diabetes mellitus, hypertension, and certain types of cancer. The increasing global prevalence of obesity requires research into new therapeutic strategies. Glucagon-like peptide-1 receptor agonists, specifically semaglutide and liraglutide, designed for type 2 diabetes mellitus treatment, have been explored as drugs for the treatment of obesity. This minireview describes the molecular mechanisms of semaglutide and liraglutide in different metabolic pathways, and its mechanism of action in processes such as appetite regulation, insulin secretion, glucose homeostasis, energy expenditure, and lipid metabolism. Finally, several clinical trial outcomes are described to show the safety and efficacy of these drugs in obesity management.

3.
J Transl Med ; 22(1): 483, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773621

RESUMO

The Mediterranean Diet (MD) has garnered increasing attention for its potential protective effects against gastric cancer (GC). The MD's rich content of antioxidants, polyphenols, and other bioactive compounds contributes to its ability to modulate gene expression, inhibit tumor growth, and regulate apoptosis. Studies have shown significant reductions in inflammatory markers such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) among individuals adhering to the MD, suggesting its pivotal role in mitigating chronic inflammation-associated with cancer development. Furthermore, the MD's anti-angiogenic properties, particularly in components like olive oil, red wine, fish, and tomatoes, offer promising avenues for reducing GC risk by inhibiting tumor angiogenesis. Additionally, the MD's influence on intestinal microbiota composition underscores its potential in maintaining immune homeostasis and reducing systemic inflammation, factors crucial in GC prevention. Despite challenges such as variability in dietary adherence scoring systems and the need for further gender and geographical-specific studies, evidence supports the MD as a cost-effective and holistic approach to GC prevention. Emphasizing the role of nutrition in public health is a promising strategy with broad implications for global health and cancer prevention initiatives. Therefore, this review explores the multifaceted impacts of the MD on GC prevention, delving into its anti-inflammatory, anti-angiogenic, and molecular mechanisms.


Assuntos
Dieta Mediterrânea , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/prevenção & controle , Cooperação do Paciente , Inflamação , Microbioma Gastrointestinal
4.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611907

RESUMO

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Assuntos
Inseticidas , Limoninas , Oxigenases , Inseticidas/farmacologia , Ecdisona , Limoninas/farmacologia , Muda
5.
Front Pharmacol ; 15: 1355533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515856

RESUMO

Brazilin is the main compound in Caesalpinia sappan and Haematoxylum braziletto, which is identified as a homoisoflavonoid based on its molecular structure. These plants are traditionally used as an anti-inflammatory to treat fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular diseases. Recently, brazilin has increased its interest in cancer studies. Several findings have shown that brazilin has cytotoxic effects on colorectal cancer, breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer, bladder carcinoma, also other cancers, along with numerous facts about its possible mechanisms that will be discussed. Besides its flavonoid content, brazilin is able to chelate metal ions. A study has proved that brazilin could be used as an antituberculosis agent based on its ability to chelate iron. This possible iron-chelating of brazilin and all the studies discussed in this review will lead us to the statement that, in the future, brazilin has the potency to be a chemo-preventive and anticancer agent. The article review aimed to determine the brazilin mechanism and pathogenesis of cancer.

6.
Clin Transl Oncol ; 26(4): 808-824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37864677

RESUMO

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/ß-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.


Assuntos
RNA Circular , Neoplasias da Glândula Tireoide , Humanos , RNA Circular/genética , Fosfatidilinositol 3-Quinases , Neoplasias da Glândula Tireoide/patologia , Prognóstico
7.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138997

RESUMO

The study of adipose tissue has received considerable attention due to its importance not just in maintaining body energy homeostasis but also in playing a role in a number of other physiological processes. Beyond storing energy, adipose tissue is important in endocrine, immunological, and neuromodulatory functions, secreting hormones that participate in the regulation of energy homeostasis. An imbalance of these functions will generate structural and functional changes in the adipose tissue, favoring the secretion of deleterious adipocytokines that induce a pro-inflammatory state, allowing the development of metabolic and cardiovascular diseases and even some types of cancer. A common theme worldwide has been the development of professional guidelines for the control and treatment of obesity, with emphasis on hypocaloric diets and exercise. The aim of this review is to examine the pathophysiological mechanisms of obesity, considering the relationship among adipose tissue and two aspects that contribute positively or negatively to keeping a healthy body homeostasis, namely, exercise and noninfectious diseases. We conclude that the relationship of these aspects does not have homogeneous effects among individuals. Nevertheless, it is possible to establish some common mechanisms, like a decrease in pro-inflammatory markers in the case of exercise, and an increase in chronic inflammation in non-communicable diseases. An accurate diagnosis might consider the particular variables of a patient, namely their molecular profile and how it affects its metabolism, routines, and lifestyle; their underling health conditions; and probably even the constitution of their microbiome. We foresee that the development and accessibility of omics approaches and precision medicine will greatly improve the diagnosis, treatment, and successful outcomes for obese patients.


Assuntos
Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/terapia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Exercício Físico/fisiologia , Dieta
8.
iScience ; 26(6): 106777, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37213234

RESUMO

The retina is a notable tissue with high metabolic needs which relies on specialized vascular networks to protect the neural retina while maintaining constant supplies of oxygen, nutrients, and dietary essential fatty acids. Here we analyzed the lipidome of the mouse retina under healthy and pathological angiogenesis using the oxygen-induced retinopathy model. By matching lipid profiles to changes in mRNA transcriptome, we identified a lipid signature showing that pathological angiogenesis leads to intense lipid remodeling favoring pathways for neutral lipid synthesis, cholesterol import/export, and lipid droplet formation. Noteworthy, it also shows profound changes in pathways for long-chain fatty acid production, vital for retina homeostasis. The net result is accumulation of large quantities of mead acid, a marker of essential fatty acid deficiency, and a potential marker for retinopathy severity. Thus, our lipid signature might contribute to better understand diseases of the retina that lead to vision impairment or blindness.

9.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216508

RESUMO

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Assuntos
Alcenos , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/química , Descarboxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
10.
Clin Transl Oncol ; 25(12): 3321-3331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37058206

RESUMO

CircRNA, the latest research hotspot in the field of RNA, is a special non-coding RNA molecule, which is unable to encode proteins and bind polyribosomes. As a regulatory molecule, circRNA participates in cancer cell generation and progression mainly through the mechanism of competitive endogenous RNA. In numerous regulated cancer organs, the thyroid and breast are both endocrine organs, and both are regulated by the hypothalamic pituitary gland axis. Thyroid cancer (TC) and breast cancer (BC) are both sexually prevalent in women and both are affected by hormones, thus they are intrinsically linked. In addition, recent epidemiological surveys have found that, early metastasis and recurrence of breast cancer remain the main cause of survival in breast cancer patients. Although at home and abroad, studies have shown that new targeted anti-tumor drugs with numerous tumor markers are gradually being used in the clinic, evidence for potential molecular mechanisms affecting its prognosis lacks clinical studies. Therefore, we search the relevant literature, and based on the latest domestic and international consensus, review the molecular mechanisms and regulation relevance of circRNA, compare the difference of the same circRNA in two tumors, to more deeply understand and lay the foundation for future clinical diagnostic, therapeutic and prognostic studies in large samples.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , RNA Circular/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Glândula Tireoide/patologia , Mama/patologia , Regulação Neoplásica da Expressão Gênica
11.
iScience ; 26(3): 106197, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36890794

RESUMO

Nucleocapsid (NC) assembly is an essential step of the virus replication cycle. It ensures genome protection and transmission among hosts. Flaviviruses are human viruses for which envelope structure is well known, whereas no information on NC organization is available. Here we designed a dengue virus capsid protein (DENVC) mutant in which a highly positive spot conferred by arginine 85 in α4-helix was replaced by a cysteine residue, simultaneously removing the positive charge and restricting the intermolecular motion through the formation of a disulfide cross-link. We showed that the mutant self-assembles into capsid-like particles (CLP) in solution without nucleic acids. Using biophysical techniques, we investigated capsid assembly thermodynamics, showing that an efficient assembly is related to an increased DENVC stability due to α4/α4' motion restriction. To our knowledge, this is the first time that flaviviruses' empty capsid assembly is obtained in solution, revealing the R85C mutant as a powerful tool to understand the NC assembly mechanism.

12.
J Biophotonics ; 16(6): e202300003, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929335

RESUMO

Along with other COVID-19 clinical manifestations, management of both olfactory and gustatory dysfunction have drawn a considerable attention. Photobiomodulation (PBM) has emerged to be a possible effective therapy in restoring taste and smell functionality, but the evidence is scarce. Hence, the present pilot study is aimed to evaluate the effectiveness of intranasal and intraoral PBM administrations in management of anosmia and ageusia respectively. Twenty Caucasian subjects who diagnosed with anosmia and ageusia were recruited. Visual analogue scale was utilised to evaluate patients' self-reported for both olfactory and gustatory functionality. The laser-PBM parameters and treatment protocols for anosmia and ageusia were as follows respectively: 660 nm, 100 mW, two points intranasally, 60 J/session, 12 sessions; dual wavelengths (660 nm and 808 nm), 100 mW, three points intraorally, 216 J/session, 12 sessions. Our results showed a significant functionality improvement of both olfactory and gustatory functionality. Extensive studies with large data and long-term follow-up period are warranted.


Assuntos
Ageusia , COVID-19 , Transtornos do Olfato , Humanos , COVID-19/complicações , COVID-19/radioterapia , Ageusia/terapia , Anosmia/radioterapia , Projetos Piloto , SARS-CoV-2 , Transtornos do Olfato/radioterapia , Transtornos do Olfato/diagnóstico
13.
Clin Transl Oncol ; 25(2): 293-305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36131071

RESUMO

Increasingly advanced biology technique has revealed that long non-coding RNAs (lncRNA) as critical factors that exert significant regulatory effects on biological functions by modulating gene transcription, epigenetic modifications and protein translation. A newly emerging lncRNA, ladybird homeobox 2 (LBX2)-antisense RNA 1 (LBX2-AS1), was found to be highly expressed in various tumors. Moreover, it is functionally linked to the regulation of essential tumor-related biological processes, such as cell proliferation and apoptosis, through interactions with multiple signaling molecules/pathways. The important roles played by LBX2-AS1 in cancer initiation and progression suggest that this lncRNA has enormous clinical potential for use as a novel biomarker or therapeutic target. In this article, we retrospectively review the latest advances in research exploring the roles of the lncRNA LBX2-AS1 in oncology field, highlighting its involvement in a comprehensive network of molecular mechanisms underlying diverse cancers and examining its potential applications in clinical practice.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Estudos Retrospectivos , RNA Longo não Codificante/genética , Transdução de Sinais
15.
Ann Hepatol ; 27(6): 100743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964907

RESUMO

INTRODUCTION AND OBJECTIVES: Circular RNA (circRNA) has attracted extensive attention in studies related to the malignant progression of cancer, including hepatocellular carcinoma (HCC). Therefore, its molecular mechanism in HCC needs to be further explored. MATERIALS AND METHODS: The expression levels of circ_0008285, microRNA (miR)-384 and ribonucleotide reductase subunit M2 (RRM2) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed using cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, cell apoptosis was analyzed by flow cytometry, and cell migration and invasion were detected by transwell assay. Protein level was detected by western blot. The relationships between miR-384 and circ_0008285 or RRM2 were predicted by bioinformatics software and validated by dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Circ_0008285 expression is elevated to HCC tissues and cell lines. Silencing of circ_0008285 inhibited the proliferation, migration and invasion of HCC cells but accelerated cell apoptosis in vitro and impeded HCC tumorigenesis in vivo. Mechanistically, circ_0008285 directly interacted with miR-384, and miR-384 silencing attenuated the effects of circ_0008285 interference on cell proliferation, migration, invasion, and apoptosis. RRM2 was a direct target of miR-384, and RRM2 overexpression reversed the effects of miR-384 overexpression on cell proliferation, migration, invasion, and apoptosis. In addition, circ_0008285 regulated RRM2 expression by sponging miR-384. CONCLUSION: In this study, circ_0008285 could promote the malignant biological behaviors of HCC cells through miR-384/RRM2 axis and has the potential to become a therapeutic target for HCC, providing a new idea for targeted therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Ribonucleosídeo Difosfato Redutase , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Circular/genética , Ribonucleosídeo Difosfato Redutase/genética
16.
Phytother Res ; 36(1): 147-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34559416

RESUMO

Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias da Mama , Nanotubos de Carbono , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzodioxóis , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Piperidinas , Alcamidas Poli-Insaturadas
17.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;55: e0349, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360814

RESUMO

ABSTRACT Polymyxin antibiotics are disfavored owing to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the increasing global prevalence of infections caused by multidrug-resistant (MDR) gram-negative bacteria, have renewed clinical interest in these polypeptide antibiotics. This review highlights the current information regarding the mechanisms of resistance to polymyxins and their molecular epidemiology. Knowledge of the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterial agents and rapid treatment choices.

18.
Rev Bras Farmacogn ; 31(4): 408-419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642508

RESUMO

Baicalin is one of the bioactive flavonoid glycosides isolated from the dried root of Scutellaria baicalensis Georgi, Lamiaceae, with antiviral properties. In recent years, the antiviral activity of baicalin has been widely investigated to explore its molecular mechanism of action. In this mini-review, the molecular mechanisms of action of baicalin as an antiviral agent are evaluated, which included three categories: the inhibition or stimulation of JAK/STAT, TLRs, and NF-κB pathways; up or down modulation of the expression levels of IFN, IL, SOCS1/3, PKR protein, Mx1 protein, and AP-1 protein; and inhibition of cell apoptosis caused by virus infection. In addition, clinical studies of baicalin are also discussed. This literature search suggested that baicalin can serve as a potential candidate for the development of a novel broad-spectrum antiviral drug. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43450-021-00182-1.

19.
Med Mycol ; 59(12): 1202-1209, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34550395

RESUMO

Rhizopus oryzae (heterotypic synonym: R. arrhizus) intrinsic voriconazole and fluconazole resistance has been linked to its CYP51A gene. However, the amino acid residues involved in this phenotype have not yet been established. A comparison between R. oryzae and Aspergillus fumigatus Cyp51Ap sequences showed differences in several amino acid residues. Some of them were already linked with voriconazole resistance in A. fumigatus. The objective of this work was to analyze the role of two natural polymorphisms in the intrinsic voriconazole resistance phenotype of R. oryzae (Y129F and T290A, equivalent to Y121F and T289A seen in triazole-resistant A. fumigatus). We have generated A. fumigatus chimeric strains harboring different R. oryzae CYP51A genes (wild-type and mutants). These mutant R. oryzae CYP51A genes were designed to carry nucleotide changes that produce mutations at Cyp51Ap residues 129 and 290 (emulating the Cyp51Ap protein of azole susceptible A. fumigatus). Antifungal susceptibilities were evaluated for all the obtained mutants. The polymorphism T290A (alone or in combination with Y129F) had no impact on triazole MIC. On the other hand, a > 8-fold decrease in voriconazole MICs was observed in A. fumigatus chimeric strains harboring the RoCYP51Ap-F129Y. This phenotype supports the assumption that the naturally occurring polymorphism Y129F at R. oryzae Cyp51Ap is responsible for its voriconazole resistance phenotype. In addition, these chimeric mutants were posaconazole hypersusceptible. Thus, our experimental data demonstrate that the RoCYP51Ap-F129 residue strongly impacts VRC susceptibility and that it would be related with posaconazole-RoCYP51Ap interaction. LAY SUMMARY: Rhizopus oryzae is intrinsically resistant to voriconazole, a commonly used antifungal agent. In this work, we analyze the role of two natural polymorphisms present in the target of azole drugs. We established that F129 residue is responsible of the intrinsic voriconazole resistance in this species.


Assuntos
Aspergillus fumigatus , Farmacorresistência Fúngica , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Azóis , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana/veterinária , Rhizopus oryzae , Voriconazol/farmacologia
20.
Viruses ; 13(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919537

RESUMO

The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.


Assuntos
COVID-19/complicações , COVID-19/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Sistema Cardiovascular , Diarreia , Síndrome de Guillain-Barré , Hemostasia , Humanos , Sistema Imunitário , Inflamação , Saúde Mental , Sistema Nervoso , Pandemias , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , Trombose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA