Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793861

RESUMO

Autonomous mobile robots are essential to the industry, and human-robot interactions are becoming more common nowadays. These interactions require that the robots navigate scenarios with static and dynamic obstacles in a safely manner, avoiding collisions. This paper presents a physical implementation of a method for dynamic obstacle avoidance using a long short-term memory (LSTM) neural network that obtains information from the mobile robot's LiDAR for it to be capable of navigating through scenarios with static and dynamic obstacles while avoiding collisions and reaching its goal. The model is implemented using a TurtleBot3 mobile robot within an OptiTrack motion capture (MoCap) system for obtaining its position at any given time. The user operates the robot through these scenarios, recording its LiDAR readings, target point, position inside the MoCap system, and its linear and angular velocities, all of which serve as the input for the LSTM network. The model is trained on data from multiple user-operated trajectories across five different scenarios, outputting the linear and angular velocities for the mobile robot. Physical experiments prove that the model is successful in allowing the mobile robot to reach the target point in each scenario while avoiding the dynamic obstacle, with a validation accuracy of 98.02%.

2.
Heliyon ; 10(4): e26227, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404866

RESUMO

BACKGROUND AND OBJECTIVE: the use of 3D cameras for gait analysis has been highly questioned due to the low accuracy they have demonstrated in the past. The objective of the study presented in this paper is to improve the accuracy of the estimations made by robot-mounted 3D cameras in human gait analysis by applying a supervised learning stage. METHODS: the 3D camera was mounted in a mobile robot to obtain a longer walking distance. This study shows an improvement in detection of kinematic gait signals and gait descriptors by post-processing the raw estimations of the camera using artificial neural networks trained with the data obtained from a certified Vicon system. To achieve this, 37 healthy participants were recruited and data of 207 gait sequences were collected using an Orbbec Astra 3D camera. There are two basic possible approaches for training and both have been studied in order to see which one achieves a better result. The artificial neural network can be trained either to obtain more accurate kinematic gait signals or to improve the gait descriptors obtained after initial processing. The former seeks to improve the waveforms of kinematic gait signals by reducing the error and increasing the correlation with respect to the Vicon system. The second is a more direct approach, focusing on training the artificial neural networks using gait descriptors directly. RESULTS: the accuracy of the 3D camera to objectify human gait was measured before and after training. In both training approaches, a considerable improvement was observed. Kinematic gait signals showed lower errors and higher correlations with respect to the ground truth. The accuracy of the system to detect gait descriptors also showed a substantial improvement, mostly for kinematic descriptors rather than spatio-temporal. When comparing both training approaches, it was not possible to define which was the absolute best. CONCLUSIONS: supervised learning improves the accuracy of 3D cameras but the selection of the training approach will depend on the purpose of the study to be conducted. This study reveals the great potential of 3D cameras and encourages the research community to continue exploring their use in gait analysis.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571658

RESUMO

This paper presents the design and synthesis of a dynamic output feedback neural network controller for a non-holonomic mobile robot. First, the dynamic model of a non-holonomic mobile robot is presented, in which these constraints are considered for the mathematical derivation of a feasible representation of this kind of robot. Then, two control strategies are provided based on kinematic control for this kind of robot. The first control strategy is based on driftless control; this means that considering that the velocity vector of the mobile robot is orthogonal to its restriction, a dynamic output feedback and neural network controller is designed so that the control action would be zero only when the velocity of the mobile robot is zero. The Lyapunov stability theorem is implemented in order to find a suitable control law. Then, another control strategy is designed for trajectory-tracking purposes, in which similar to the driftless controller, a kinematic control scheme is provided that is suitable to implement in more sophisticated hardware. In both control strategies, a dynamic control law is provided along with a feedforward neural network controller, so in this way, by the Lyapunov theory, the stability and convergence to the origin of the mobile robot position coordinates are ensured. Finally, two numerical experiments are presented in order to validate the theoretical results synthesized in this research study. Discussions and conclusions are provided in order to analyze the results found in this research study.

4.
Micromachines (Basel) ; 13(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144113

RESUMO

In this study, the first goal is achieving a hybrid approach composed by an Interval Type-3 Fuzzy Logic System (IT3FLS) for the dynamic adaptation of α and ß parameters of Bee Colony Optimization (BCO) algorithm. The second goal is, based on BCO, to find the best partition of the membership functions (MFs) of a Fuzzy Controller (FC) for trajectory tracking in an Autonomous Mobile Robot (AMR). A comparative with different types of Fuzzy Systems, such as Fuzzy BCO with Type-1 Fuzzy Logic System (FBCO-T1FLS), Fuzzy BCO with Interval Type-2 Fuzzy Logic System (FBCO-IT2FLS) and Fuzzy BCO with Generalized Type-2 Fuzzy Logic System (FBCO-GT2FLS) is analyzed. A disturbance is added to verify if the FBCO-IT3FLS performance is better when the uncertainty is present. Several performance indices are used; RMSE, MSE and some metrics of control such as, ITAE, IAE, ISE and ITSE to measure the controller's performance. The experiments show excellent results using FBCO-IT3FLS and are better than FBCO-GT2FLS, FBCO-IT2FLS and FBCO-T1FLS in the adaptation of α and ß parameters.

5.
Data Brief ; 40: 107802, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35036495

RESUMO

This data article describes eleven datasets collected from laboratory individual tests with two DC motors of the same model. The motors are proposed to be used as the actuators of an Automated Guided Vehicle (AGV). Each dataset shares the same structure, with the measurement of twelve variables: instant of measurement, encoder pulse counts, calculated motor velocity, raw current, calculated current, raw voltage from output A1, raw voltage from output B1, calculated voltage from output A1, calculated voltage from output B1, potential difference applied to the motor terminals, motor status, and the Arduino analog output value in pulse width modulation (PWM). The data are helpful to model and identify the system considering its dynamics. Such consideration on control systems design, specifically on AGV position control, can improve the controller accuracy. It also can be useful to study robot design, and mobile robot and AGV simulation.

6.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204348

RESUMO

The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by covering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies.


Assuntos
Robótica , Algoritmos , Simulação por Computador
7.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009849

RESUMO

Mobile robots must be capable to obtain an accurate map of their surroundings to move within it. To detect different materials that might be undetectable to one sensor but not others it is necessary to construct at least a two-sensor fusion scheme. With this, it is possible to generate a 2D occupancy map in which glass obstacles are identified. An artificial neural network is used to fuse data from a tri-sensor (RealSense Stereo camera, 2D 360° LiDAR, and Ultrasonic Sensors) setup capable of detecting glass and other materials typically found in indoor environments that may or may not be visible to traditional 2D LiDAR sensors, hence the expression improved LiDAR. A preprocessing scheme is implemented to filter all the outliers, project a 3D pointcloud to a 2D plane and adjust distance data. With a Neural Network as a data fusion algorithm, we integrate all the information into a single, more accurate distance-to-obstacle reading to finally generate a 2D Occupancy Grid Map (OGM) that considers all sensors information. The Robotis Turtlebot3 Waffle Pi robot is used as the experimental platform to conduct experiments given the different fusion strategies. Test results show that with such a fusion algorithm, it is possible to detect glass and other obstacles with an estimated root-mean-square error (RMSE) of 3 cm with multiple fusion strategies.


Assuntos
Robótica , Algoritmos , Redes Neurais de Computação
8.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967286

RESUMO

This work presents the development and implementation of a distributed navigation system based on object recognition algorithms. The main goal is to introduce advanced algorithms for image processing and artificial intelligence techniques for teaching control of mobile robots. The autonomous system consists of a wheeled mobile robot with an integrated color camera. The robot navigates through a laboratory scenario where the track and several traffic signals must be detected and recognized by using the images acquired with its on-board camera. The images are sent to a computer server that performs a computer vision algorithm to recognize the objects. The computer calculates the corresponding speeds of the robot according to the object detected. The speeds are sent back to the robot, which acts to carry out the corresponding manoeuvre. Three different algorithms have been tested in simulation and a practical mobile robot laboratory. The results show an average of 84% success rate for object recognition in experiments with the real mobile robot platform.

9.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521754

RESUMO

The ability to plan a multiple-target path that goes through places considered important is desirable for autonomous mobile robots that perform tasks in industrial environments. This characteristic is necessary for inspection robots that monitor the critical conditions of sectors in thermal, nuclear, and hydropower plants. This ability is also useful for applications such as service at home, victim rescue, museum guidance, land mine detection, and so forth. Multiple-target collision-free path planning is a topic that has not been very studied because of the complexity that it implies. Usually, this issue is left in second place because, commonly, it is solved by segmentation using the point-to-point strategy. Nevertheless, this approach exhibits a poor performance, in terms of path length, due to unnecessary turnings and redundant segments present in the found path. In this paper, a multiple-target method based on homotopy continuation capable to calculate a collision-free path in a single execution for complex environments is presented. This method exhibits a better performance, both in speed and efficiency, and robustness compared to the original Homotopic Path Planning Method (HPPM). Among the new schemes that improve their performance are the Double Spherical Tracking (DST), the dummy obstacle scheme, and a systematic criterion to a selection of repulsion parameter. The case studies show its effectiveness to find a solution path for office-like environments in just a few milliseconds, even if they have narrow corridors and hundreds of obstacles. Additionally, a comparison between the proposed method and sampling-based planning algorithms (SBP) with the best performance is presented. Furthermore, the results of case studies show that the proposed method exhibits a better performance than SBP algorithms for execution time, memory, and in some cases path length metrics. Finally, to validate the feasibility of the paths calculated by the proposed planner; two simulations using the pure-pursuit controlled and differential drive robot model contained in the Robotics System Toolbox of MATLAB are presented.

10.
Sensors (Basel) ; 18(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544520

RESUMO

By using the hierarchical controller approach, a new solution for the control problem related to trajectory tracking in a differential drive wheeled mobile robot (DDWMR) is presented in this paper. For this aim, the dynamics of the three subsystems composing a DDWMR, i.e., the mechanical structure (differential drive type), the actuators (DC motors), and the power stage (DC/DC Buck power converters), are taken into account. The proposed hierarchical switched controller has three levels: the high level corresponds to a kinematic control for the mechanical structure; the medium level includes two controls based on differential flatness for the actuators; and the low level is linked to two cascade switched controls based on sliding modes and PI control for the power stage. The hierarchical switched controller was experimentally implemented on a DDWMR prototype via MATLAB-Simulink along with a DS1104 board. With the intention of assessing the performance of the switched controller, experimental results associated with a hierarchical average controller recently reported in literature are also presented here. The experimental results show the robustness of both controllers when parametric uncertainties are applied. However, the performance achieved with the switched controller introduced in the present paper is better than, or at least similar to, performance achieved with the average controller reported in literature.

11.
Sensors (Basel) ; 16(9)2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618062

RESUMO

A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA