Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39330625

RESUMO

In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices.

2.
Nanotechnology ; 35(6)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38009501

RESUMO

In this work, we present a theoretical model for domain wall (DW) oscillations in a curved magnetic nanowire with a constant curvature under the action of a uniaxial magnetic field. Our results show that the DW dynamics can be described as that of the mechanical pendulum, and both the NW curvature and the external magnetic field influence its oscillatory frequency. A comparison between our theoretical approach and experimental data in the literature shows an excellent agreement. The results presented here can be used to design devices demanding the proper control of the DW oscillatory motion in NWs.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368246

RESUMO

This work analyzes the magnetic configurations of cylindrical nanowires with a bulk Dzyaloshinskii-Moriya interaction and easy-plane anisotropy. We show that this system allows the nucleation of a metastable toron chain even when no out-of-plane anisotropy exists in the nanowire's top and bottom surfaces, as usually required. The number of nucleated torons depends on the nanowire length and the strength of an external magnetic field applied to the system. The size of each toron depends on the fundamental magnetic interactions and can be controlled by external stimuli, allowing the use of these magnetic textures as information carriers or nano-oscillator elements. Our results evidence that the topology and structure of the torons yield a wide variety of behaviors, revealing the complex nature of these topological textures, which should present an exciting interaction dynamic, depending on the initial conditions.

4.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36689765

RESUMO

Three dimensional magnetic textures are a cornerstone in magnetism research. In this work, we analyze the stabilization and dynamic response of a magnetic hopfion hosted in a toroidal nanoring with intrinsic Dzyaloshinskii-Moriya interaction simulating FeGe. Our results evidence that unlike their planar counterparts, where perpendicular magnetic anisotropies are necessary to stabilize hopfions, the shape anisotropy originated on the torus symmetry naturally yields the nucleation of these topological textures. We also analyze the magnetization dynamical response by applying a magnetic field pulse to differentiate among several magnetic patterns. Finally, to understand the nature of spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases and describe the differences among bulk and surface modes. Importantly, hopfions lying in toroidal nanorings present a non-circularly symmetric poloidal resonant mode, which is not observed in other systems hosting hopfions.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144874

RESUMO

In this work, we present an analysis of skyrmion dynamics considering Dzyaloshinskii-Moriya interactions in an STNO device with a double-disk geometry. Three regimes were observed as a function of geometric parameters and the electric current density: (i) the skyrmion is annihilating at the system's border; (ii) the skyrmion moves in a non-circular trajectory alternating its position between the two disks, and (iii) the skyrmion only rotates inside a one-disk subsystem. For the annihilation state, we found that the transient time decays within a stretched exponential law as a function of the electric current. Our results show a 2D state diagram that can guide new experimental work in order to obtain these specific behaviors for new applications based on skyrmion dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA