Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 16(9): 1924977, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33955336

RESUMO

Ammonium (NH4+) stress has multiple effects on plant physiology, therefore, plant responses are complex, and multiple mechanisms are involved in NH4+ sensitivity and tolerance in plants. Root growth inhibition is an important quantitative readout of the effects of NH4+ stress on plant physiology, and cell elongation appear as the principal growth inhibition target. We recently proposed autophagy as a relevant physiological mechanisms underlying NH4+ sensitivity response in Arabidopsis. In a brief overview, the impaired macro-autophagic flux observed under NH4+ stress conditions has a detrimental impact on the cellular energetic balance, and therefore on the energy-demanding plant growth. In contrast to its inhibitory effect on the autophagosomes flux to vacuole, NH4+ toxicity induced a micro-autophagy-like process. Consistent with the reduced membrane flux to the vacuole related to macro-autophagy inhibition and the increased tonoplast degradation due to enhanced micro-autophagy, the vacuoles of the root cells of the NH4+-stressed plants showed lower tonoplast content and a decreased perimeter/area ratio. As the endosome-to-vacuole trafficking is another important process that contributes to membrane flux toward the vacuole, we evaluated the effects of NH4+ stress on this process. This allows us to propose that autophagy could contribute to vacuole development as well as possible avenues to follow for future studies.


Assuntos
Adaptação Fisiológica , Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Autofagia/fisiologia , Raízes de Plantas/metabolismo , Estresse Fisiológico , Vacúolos/metabolismo
2.
Front Oncol ; 10: 597743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312955

RESUMO

Tumor cells can employ epithelial-mesenchymal transition (EMT) or autophagy in reaction to microenvironmental stress. Importantly, EMT and autophagy negatively regulate each other, are able to interconvert, and both have been shown to contribute to drug-resistance in glioblastoma (GBM). EMT has been considered one of the mechanisms that confer invasive properties to GBM cells. Autophagy, on the other hand, may show dual roles as either a GBM-promoter or GBM-suppressor, depending on microenvironmental cues. The Wingless (WNT) signaling pathway regulates a plethora of developmental and biological processes such as cellular proliferation, adhesion and motility. As such, GBM demonstrates deregulation of WNT signaling in favor of tumor initiation, proliferation and invasion. In EMT, WNT signaling promotes induction and stabilization of different EMT activators. WNT activity also represses autophagy, while nutrient deprivation induces ß-catenin degradation via autophagic machinery. Due to the importance of the WNT pathway to GBM, and the role of WNT signaling in EMT and autophagy, in this review we highlight the effects of the WNT signaling in the regulation of both processes in GBM, and discuss how the crosstalk between EMT and autophagy may ultimately affect tumor biology.

3.
Planta ; 250(2): 519-533, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31104130

RESUMO

MAIN CONCLUSION: Different autophagy pathways are a driver of vacuolar biogenesis and are development stage specific during the extrafloral nectary development in Citharexylum myrianthum. Plant autophagy plays an important role in various developmental processes such as seed germination, pollen maturation and leaf senescence. However, studies that address the evidence of autophagy and its role in the development of plant glands are scarce and largely restricted to laticifers. Regarding nectary, studies have repeatedly pointed to signs of degradation associated with the end of the secretory cycle, without exploring autophagy. Likewise, the relationship between autophagy and biogenesis of vacuoles remains an unexplored issue. In this study, using conventional and microwave fixation in association with ultracytochemical methods for transmission electron microscopy, we investigated the occurrence of autophagy and its implication in the differentiation of extrafloral nectary in Citharexylum myrianthum (Verbenaceae) under natural conditions, focusing on the vacuole biogenesis. We described a variety of vacuole types associated with the stage of nectary epidermis development, which differs with respect to origin, function and nature of the products to be stored. Three distinct autophagy pathways were detected: macroautophagy, microautophagy (both restricted to the undifferentiated epidermal cells, at the presecretory stage) and megaautophagy (circumscribed to the differentiated epidermal cells, at the postsecretory stage). Our study clearly demonstrated that the vacuole variety and autophagy processes in the nectary epidermal cells are development specific. This study highlights the role of autophagy in vacuole biogenesis and its implications for the development of nectary and opens new venues for future studies on regulation mechanisms for autophagy in plant secretory structures under normal conditions.


Assuntos
Autofagia , Néctar de Plantas/metabolismo , Verbenaceae/fisiologia , Microscopia Eletrônica de Transmissão , Vacúolos/fisiologia , Vacúolos/ultraestrutura , Verbenaceae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA