Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36150217

RESUMO

Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.

2.
World J Microbiol Biotechnol ; 35(5): 73, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037431

RESUMO

Metal corrosion is a major global concern in many economic sectors. The degradation of metal surfaces is responsible for losses in values that account for about 3% of gross domestic product (GDP) only in the US. Parts of all corrosion processes described in different environments are present mainly in marine environments. The marine environment is characterized as favoring the corrosion processes of several metallic alloys, damaging structures used in the construction of ships, ports, oil pipelines, and others. Despite chemical corrosion being the most frequently described in these environments, studies show the participation of microorganisms in direct corrosion processes or in the acceleration/influence of the corrosive action, through the formation of complex biofilms. These structures create favorable conditions for microorganisms to degrade metal surfaces, causing damage known as pitting and crevices. Currently, diverse technicians are employed in biocorrosion research, e.g. electronic microscopy, and DNA sequencing. These techniques have clarified the dynamic process of the formation of biofilm structures, allowing understanding of the succession of different species during the evolution of the structure. Improving the understanding of how this interaction between biofilm and metallic surface occurs will enable better evaluation of strategies to avoid or decelerate the degradation of metallic structures in marine environments.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água do Mar/microbiologia , Aço/química , Ligas/química , Bactérias/metabolismo , Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos , Corrosão , Eletroquímica , Metais/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA