Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 61(5): 897-908, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065636

RESUMO

Despite the fundamental importance of nicotinamide adenine dinucleotide (NAD+) for metabolism, the physiological roles of NAD+ carriers in plants remain unclear. We previously characterized the Arabidopsis thaliana gene (At1g25380), named AtNDT2, encoding a protein located in the mitochondrial inner membrane, which imports NAD+ from the cytosol using ADP and AMP as counter-exchange substrates for NAD+. Here, we further investigated the physiological roles of NDT2, by isolating a T-DNA insertion line, generating an antisense line and characterizing these genotypes in detail. Reduced NDT2 expression affected reproductive phase by reducing total seed yield. In addition, reduced seed germination and retardation in seedling establishment were observed in the mutant lines. Moreover, remarkable changes in primary metabolism were observed in dry and germinated seeds and an increase in fatty acid levels was verified during seedling establishment. Furthermore, flowers and seedlings of NDT2 mutants displayed upregulation of de novo and salvage pathway genes encoding NAD+ biosynthesis enzymes, demonstrating the transcriptional control mediated by NDT2 activity over these genes. Taken together, our results suggest that NDT2 expression is fundamental for maintaining NAD+ balance amongst organelles that modulate metabolism, physiology and developmental processes of heterotrophic tissues.


Assuntos
Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , NAD/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Flores/fisiologia , Genótipo , Processos Heterotróficos , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Piridinas/metabolismo , Reprodução/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-32083023

RESUMO

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Assuntos
Doença de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Doença de Chagas/metabolismo , Glicólise , Humanos , Microcorpos , Organelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA