Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 9: e1728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192486

RESUMO

The one-dimensional cutting-stock problem (1D-CSP) consists of obtaining a set of items of different lengths from stocks of one or different lengths, where the minimization of waste is one of the main objectives to be achieved. This problem arises in several industries like wood, glass, and paper, among others similar. Different approaches have been designed to deal with this problem ranging from exact algorithms to hybrid methods of heuristics or metaheuristics. The African Buffalo Optimization (ABO) algorithm is used in this work to address the 1D-CSP. This algorithm has been recently introduced to solve combinatorial problems such as travel salesman and bin packing problems. A procedure was designed to improve the search by taking advantage of the location of the buffaloes just before it is needed to restart the herd, with the aim of not to losing the advance reached in the search. Different instances from the literature were used to test the algorithm. The results show that the developed method is competitive in waste minimization against other heuristics, metaheuristics, and hybrid approaches.

2.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162025

RESUMO

Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.


Assuntos
Algoritmos , Software , Animais , Abelhas
3.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803171

RESUMO

This work proposes a new approach to improve swarm intelligence algorithms for dynamic optimization problems by promoting a balance between the transfer of knowledge and the diversity of particles. The proposed method was designed to be applied to the problem of video tracking targets in environments with almost constant lighting. This approach also delimits the solution space for a more efficient search. A robust version to outliers of the double exponential smoothing (DES) model is used to predict the target position in the frame delimiting the solution space in a more promising region for target tracking. To assess the quality of the proposed approach, an appropriate tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers whose algorithms are based on swarm intelligence. The trackers were compared in terms of the average processing time per frame and the area under curve of the success rate per Pascal metric. For the experiment, we used a random sample of videos obtained from the public Hanyang visual tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time and higher quality of tracking compared with the other competing trackers analyzed in this work. The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the success rate of its competitors. The average processing time per frame is about at least 10% faster than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results also show that the predictions of the robust DES model are quite accurate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA