Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37688159

RESUMO

Using cytotoxic reducing and stabilizing agents in the synthesis of gold nanoparticles (AuNPs) limits their use in biomedical applications. One strategy to overcome this problem is using "green" synthesis methodologies using polysaccharides. In the present study, we propose a green methodology for synthetizing AuNPs with mesquite gum (MG) as a reducing agent and steric stabilizer in Gold(III) chloride trihydrate aqueous solutions to obtain biocompatible nanoparticles that can be used for biomedical applications. Through this method, AuNPs can be produced without using elevated temperatures or pressures. For synthetizing gold nanoparticles coated with mesquite gum (AuNPs@MG), Gold(III) chloride trihydrate was used as a precursor, and mesquite gum was used as a stabilizing and reducing agent. The AuNPs obtained were characterized using UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and FT-IR spectroscopy. The stability in biological media (phosphate buffer solution), cytotoxicity (MTT assay, hematoxylin, and eosin staining), and hemocompatibility (Hemolysis assay) were measured at different concentrations and exposure times. The results showed the successful synthesis of AuNPs@MG with sizes ranging from 3 to 30 nm and a zeta potential of -31 mV. The AuNPs@MG showed good colloidal stability in PBS (pH 7.4) for up to 24 h. Finally, cytotoxicity assays showed no changes in cell metabolism or cell morphology. These results suggest that these gold nanoparticles have potential biomedical applications because of their low cytotoxicity and hemotoxicity and improved stability at a physiological pH.

2.
Polymers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451303

RESUMO

In the present study, the modification of branched polyethyleneimine (b-PEI) was carried out using mesquite gum (MG) to improve its hemocompatibility to be used in biomedical applications. In the copolymer synthesis process (carboxymethylated mesquite gum grafted polyethyleneimine copolymer (CBX-MG-PEI), an MG carboxymethylation reaction was initially carried out (carboxymethylated mesquite gum (CBX-MG). Subsequently, the functionalization between CBX-MG and b-PEI was carried out using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as crosslinking agents. The synthesis products were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Thermogravimetric analysis showed that CBX-MG and CBX-MG-PEI presented a lower decomposition temperature than MG. The CBX-MG-PEI has a high buffer capacity in the pH range of 4 to 7, similar to the b-PEI. In addition, the CBX-MG-PEI showed an improvement in hemocompatibility in comparison with the b-PEI. The results showed a non-hemolytic property at doses lower than 0.1 µg/mL (CBX-MG-PEI). These results allow us to propose that this copolymer be used in transfection, polymeric nanoparticles, and biomaterials due to its physicochemical and hemocompatibility properties.

3.
Food Res Int ; 116: 1010-1019, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716883

RESUMO

Lemon essential oil (LEO) emulsions were prepared using mesquite gum (MG) - chia mucilage (CM) mixtures (90-10 and 80-20 MG-CM weight ratios) and MG as control sample, LEO emulsions were thenspray dried for obtaining the respective microcapsules.LEO emulsions were analyzed by mean droplet size and apparent viscosity, while microcapsules were characterized through mean particle size, morphology, volatile oil retention (≤51.5%), encapsulation efficiency (≥96.9%), as well asoxidation and release kinetics of LEO. TheLEO oxidation kinetics showed that 90-10 and 80-20MG-CM microcapsules displayed maximum peroxide values of 91.6 and 90.5 meq hydroperoxides kg-1 of oil, respectively, without significant differences between them (p > .05).MG-CM microcapsules provided better protection to LEO against oxidation than those formed with MG; where the oxidation kinetics were well adjusted to zero-order (r2 ≥ 0.94).The LEO release kinetics from microcapsules were carried out at differentpH (2.5 and 6.5) and temperature (37 °C and 65 °C) and four mathematical models (zero-order, first-order, Higuchi and Peppas) were used to evaluate the experimental data; the release kinetics indicated that the 80-20 MG-CM microcapsules had a longer delay in LEO release rate, followed by 90-10 MG-CM and MG microcapsules, hence, CM addition in MG-CM microcapsules contributed to delay the LEO release rate. This work clearly demonstrates that use of a relatively small amount of CM mixed with MGimproves oxidative stability and delays the release rate of encapsulated LEO regarding MG microcapsules, therefore, MG-CM mixtures are interesting additives systems suitable for being applied in food industry.


Assuntos
Antioxidantes/química , Gomas Vegetais/química , Mucilagem Vegetal/química , Óleos de Plantas/química , Prosopis/química , Salvia , Antioxidantes/isolamento & purificação , Emulsões , Manipulação de Alimentos , Cinética , Oxirredução , Tamanho da Partícula , Mucilagem Vegetal/isolamento & purificação , Salvia/química , Sementes , Solubilidade , Viscosidade
4.
Materials (Basel) ; 9(10)2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28773938

RESUMO

The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA