RESUMO
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Assuntos
5'-Nucleotidase , Adenosina , Apirase , Polpa Dentária , Células-Tronco Mesenquimais , Ligamento Periodontal , Linfócitos T , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Humanos , Adenosina/metabolismo , Polpa Dentária/citologia , Polpa Dentária/imunologia , Polpa Dentária/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Gengiva/citologia , Gengiva/metabolismo , Gengiva/imunologia , Antígenos CD/metabolismo , Imunomodulação , Diferenciação Celular , Proliferação de Células , Dipeptidil Peptidase 4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Ligadas por GPIRESUMO
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-ß and IL-1ß was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.
Assuntos
Proliferação de Células , Vesículas Extracelulares , Macrófagos , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/citologia , Movimento Celular , Células THP-1 , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Queratinócitos/metabolismo , Queratinócitos/citologia , Citocinas/metabolismoRESUMO
Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.
Assuntos
Células-Tronco Mesenquimais , Patentes como Assunto , Células-Tronco Mesenquimais/citologia , Humanos , Exossomos , Sistema Livre de Células , Medicina Regenerativa/métodos , AnimaisRESUMO
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Células-Tronco Multipotentes , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Proliferação de Células , Células CultivadasRESUMO
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI.
Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fenótipo , Células-Tronco Mesenquimais/metabolismoRESUMO
BACKGROUND: The metabolic reprogramming of mesenchymal stem/stromal cells (MSC) favoring glycolysis has recently emerged as a new approach to improve their immunotherapeutic abilities. This strategy is associated with greater lactate release, and interestingly, recent studies have proposed lactate as a functional suppressive molecule, changing the old paradigm of lactate as a waste product. Therefore, we evaluated the role of lactate as an alternative mediator of MSC immunosuppressive properties and its contribution to the enhanced immunoregulatory activity of glycolytic MSCs. MATERIALS AND METHODS: Murine CD4+ T cells from C57BL/6 male mice were differentiated into proinflammatory Th1 or Th17 cells and cultured with either L-lactate, MSCs pretreated or not with the glycolytic inductor, oligomycin, and MSCs pretreated or not with a chemical inhibitor of lactate dehydrogenase A (LDHA), galloflavin or LDH siRNA to prevent lactate production. Additionally, we validated our results using human umbilical cord-derived MSCs (UC-MSCs) in a murine model of delayed type 1 hypersensitivity (DTH). RESULTS: Our results showed that 50 mM of exogenous L-lactate inhibited the proliferation rate and phenotype of CD4+ T cell-derived Th1 or Th17 by 40% and 60%, respectively. Moreover, the suppressive activity of both glycolytic and basal MSCs was impaired when LDH activity was reduced. Likewise, in the DTH inflammation model, lactate production was required for MSC anti-inflammatory activity. This lactate dependent-immunosuppressive mechanism was confirmed in UC-MSCs through the inhibition of LDH, which significantly decreased their capacity to control proliferation of activated CD4+ and CD8+ human T cells by 30%. CONCLUSION: These findings identify a new MSC immunosuppressive pathway that is independent of the classical suppressive mechanism and demonstrated that the enhanced suppressive and therapeutic abilities of glycolytic MSCs depend at least in part on lactate production.
Assuntos
Ácido Láctico , Células-Tronco Mesenquimais , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Imunossupressores , Diferenciação CelularRESUMO
Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68ï¼/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-αï¼ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.
RESUMO
Breast cancer is the predominant form of carcinoma among women worldwide, with 70% of advanced patients developing bone metastases, with a high mortality rate. In this sense, the bone marrow (BM) mesenchymal stem/stromal cells (MSCs) are critical for BM/bone homeostasis, and failures in their functionality, transform the BM into a pre-metastatic niche (PMN). We previously found that BM-MSCs from advanced breast cancer patients (BCPs, infiltrative ductal carcinoma, stage III-B) have an abnormal profile. This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients. A comparative analysis was undertaken, which included self-renewal capacity, morphology, proliferation capacity, cell cycle, reactive oxygen species (ROS) levels, and senescence-associated ßgalactosidase (SAßgal) staining of BM-derived MSCs isolated from 14 BCPs and 9 healthy volunteers (HVs). Additionally, the expression and activity of the telomerase subunit TERT, as well as telomere length, were measured. Expression levels of pluripotency, osteogenic, and osteoclastogenic genes (OCT-4, SOX-2, M-CAM, RUNX-2, BMP-2, CCL-2, M-CSF, and IL-6) were also determined. The results showed that MSCs from BCPs had reduced ,self-renewal and proliferation capacity. These cells also exhibited inhibited cell cycle progression and phenotypic changes, such as an enlarged and flattened appearance. Additionally, there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length. We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression. We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients.
Assuntos
Neoplasias da Mama , Carcinoma , Células-Tronco Mesenquimais , Humanos , Feminino , Medula Óssea , Neoplasias da Mama/genética , Espécies Reativas de OxigênioRESUMO
Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.
Assuntos
Células-Tronco Mesenquimais , Humanos , Cinética , Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura , Diferenciação Celular , Células CultivadasRESUMO
Several studies have shown that diverse components of the bone marrow (BM) microenvironment play a central role in the progression, pathophysiology, and drug resistance in multiple myeloma (MM). In particular, the dynamic interaction between BM mesenchymal stem cells (BM-MSC) and MM cells has shown great relevance. Here we showed that inhibiting both PKC and NF-κB signalling pathways in BM-MSC reduced cell survival in the MM cell line H929 and increased its susceptibility to the proteasome inhibitor bortezomib. PKC-mediated cell survival inhibition and bortezomib susceptibility induction were better performed by the chimeric peptide HKPS than by the classical enzastaurin inhibitor, probably due to its greatest ability to inhibit cell adhesion and its increased capability to counteract the NF-κB-related signalling molecules increased by the co-cultivation of BM-MSC with H929 cells. Thus, inhibiting two coupled signalling molecules in BM-MSC was more effective in blocking the supportive cues emerging from the mesenchymal stroma. Considering that H929 cells were also directly susceptible to PKC and NF-κB inhibition, we showed that treatment of co-cultures with the HKPS peptide and BAY11-7082, followed by bortezomib, increased H929 cell death. Therefore, targeting simultaneously connected signalling elements of BM-MSC responsible for MM cells support with compounds that also have anti-MM activity can be an improved treatment strategy.
Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo , Microambiente TumoralRESUMO
Macrophages with the M2 phenotype promote tumor development through the immunosuppression of antitumor immunity. We previously demonstrated the presence of mesenchymal stem/stromal cells (MSCs) in cervical cancer (CeCa-MSCs), suggesting an immune protective capacity in tumors, but to date, their effect in modulating macrophage polarization remains unknown. In this study, we compared the capacities of MSCs from normal cervix (NCx) and CeCa to promote M2 macrophage polarization in a coculture system. Our results demonstrated that CeCa-MSCs, in contrast to NCx-MSCs, significantly decreased M1 macrophage cell surface marker expression (HLA-DR, CD80, CD86) and increased M2 macrophage expression (CD14, CD163, CD206, Arg1) in cytokine-induced CD14+ monocytes toward M1- or M2-polarized macrophages. Interestingly, compared with NCx-MSCs, in M2 macrophages generated from CeCa-MSC cocultures, we observed an increase in the percentage of phagocytic cells, in the intracellular production of IL-10 and IDO, the capacity to decrease T cell proliferation and for the generation of CD4+CD25+FoxP3+ Tregs. Importantly, this capacity to promote M2 macrophage polarization was correlated with the intracellular expression of macrophage colony-stimulating factor (M-CSF) and upregulation of IL-10 in CeCa-MSCs. Furthermore, the presence of M2 macrophages was correlated with the increased production of IL-10 and IL-1RA anti-inflammatory molecules. Our in vitro results indicate that CeCa-MSCs, in contrast to NCx-MSCs, display an increased M2-macrophage polarization potential and suggest a role of CeCa-MSCs in antitumor immunity.
Assuntos
Interleucina-10 , Neoplasias do Colo do Útero , Humanos , Feminino , Interleucina-10/metabolismo , Neoplasias do Colo do Útero/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Células Estromais/metabolismoRESUMO
Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.
RESUMO
OBJECTIVES: Evaluating the effects of rosmarinic (RA) and cryptochlorogenic (CGA) acids isolated from Blechnum binervatum extract on stem cell viability, toxicity and the protective effect on oxidative cell damage. METHODS: MTT and LDH methods were employed, using stem cells from teeth. RA and CGA were evaluated at 100, 250 and 500 µM. The negative effect of hydrogen peroxide (H2O2) (200-2200 µM) and the capacity of RA and CGA (10-100 µM) as protective agents were also evaluated. DAPI followed by fluorescent microscopy was employed to photograph the treated and untreated cells. KEY FINDINGS: At all tested concentrations, RA and CGA demonstrated the ability to maintain cell viability, and with no cytotoxic effects on the treated stem cells. RA also induced an increase of the cell viability and a reduction in cytotoxicity. H2O2 (1400 µM) induced >50% of cytotoxicity, and both compounds were capable of suppressing H2O2 damage, even at the lowest concentration. At 100 µM, in H2O2 presence, total cell viability was observed through microscope imaging. CONCLUSIONS: These findings contribute to the continued research into natural substances with the potential for protecting cells against oxidative injury, with the consideration that RA and CGA are useful in the regeneration of damaged stem cells.
Assuntos
Gleiquênias , Peróxido de Hidrogênio , Peróxido de Hidrogênio/toxicidade , Ácido Clorogênico/farmacologia , Estresse Oxidativo , Sobrevivência Celular , Células-TroncoRESUMO
Stem Cell based-therapy is an active area of research in regenerative medicine. Mesenchymal stem/stromal cells (MSCs) are multipotent adult stem/progenitor cells, which could be easily expanded in vitro and have the ability to selectively migrate toward injured tissues, evade the immune system, and secrete trophic factors to support the repair of damaged tissues. The use of MSCs for cell and regenerative purposes has garnered the attention of scientists and clinicians. However, one of the most important issues before use MSCs in clinical practice is to standardize a number of aspects related to the source of MSCs, culture conditions, pre-condition protocols before transplantation, administration route, doses, or treatment duration. In this chapter, we described two standard protocols to isolate MSCs from bone marrow and umbilical cord connective tissue. In addition, basic characterization including immunophenotyping by flow cytometry and differentiation capability is also described.
Assuntos
Células-Tronco Mesenquimais , Adulto , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Tecido Conjuntivo , Humanos , Medicina RegenerativaRESUMO
Cancer is the second leading cause of death worldwide, with 10.0 million cancer deaths in 2020. Despite advances in targeted therapies, some pharmacological drawbacks associated with anticancer chemo and immunotherapeutic agents include high toxicities, low bioavailability, and drug resistance. In recent years, extracellular vesicles emerged as a new promising platform for drug delivery, with the advantage of their inherent biocompatibility and specific targeting compared to artificial nanocarriers, such as liposomes. Particularly, mesenchymal stem/stromal cells were proposed as a source of extracellular vesicles for cancer therapy because of their intrinsic properties: high in vitro self-renewal and proliferation, regenerative and immunomodulatory capacities, and secretion of extracellular vesicles that mediate most of their paracrine functions. Moreover, extracellular vesicles are static and safer in comparison with mesenchymal stem/stromal cells, which can undergo genetic/epigenetic or phenotypic changes after their administration to patients. In this review, we summarize currently reported information regarding mesenchymal stem/stromal cell-derived extracellular vesicles, their proper isolation and purification techniques - from either naive or engineered mesenchymal stem/stromal cells - for their application in cancer therapy, as well as available downstream modification methods to improve their therapeutic properties. Additionally, we discuss the challenges associated with extracellular vesicles for cancer therapy, and we review some preclinical and clinical data available in the literature.
RESUMO
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Assuntos
Mitocôndrias/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Pneumopatias/terapia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/transplante , Dinâmica Mitocondrial , Comunicação ParácrinaRESUMO
SUMMARY: Multiple sclerosis is a demyelinating disease of the nervous system that affects young people of working age and quickly leads to disability. Treatment of this pathology with umbilical cord mesenchymal stem cells is promising, given their immunomodulatory and neurotrophic properties. The study involved 27 patients diagnosed with multiple sclerosis, 12 of whom underwent combined treatment (intravenous and intrathecal administration) of umbilical cord multipotent mesenchymal stromal/stem cells. The effectiveness of treatment was determined by the degree of neurological deficit and spasticity. Combined treatment with umbilical cord mesenchymal stem cells significantly improves the condition of patients with multiple sclerosis and promotes the regression of neurological deficits and spasticity. This treatment is safe, but for a deeper study, it is necessary to continue research in this area.
RESUMEN: La esclerosis múltiple es una enfermedad desmielinizante del sistema nervioso que afecta a los jóvenes en edad laboral y conduce rapidamente a la discapacidad. El tratamiento de esta patología con células madre mesenquimales de cordón umbilical es prometedor, debido a sus propiedades inmunomoduladoras y neurotróficas. En el estudio participaron 27 pacientes diagnosticados de esclerosis múltiple, 12 de los cuales fueron sometidos a un tratamiento combinado (administración intravenosa e intratecal) de células madre / estromales mesenquimales multipotentes del cordón umbilical. La efectividad del tratamiento estuvo determinada por el grado de déficit neurológico y espasticidad. El tratamiento combinado con células madre mesenquimales del cordón umbilical mejora significativamente la condición de los pacientes con esclerosis múltiple y promueve la regresión de los déficits neurológicos y la espasticidad. Este tratamiento es seguro, sin embargo, es necesario continuar investigando en esta area.
Assuntos
Humanos , Masculino , Feminino , Adulto , Cordão Umbilical/citologia , Células-Tronco Mesenquimais , Esclerose Múltipla/terapia , Resultado do Tratamento , Terapia Combinada , Administração IntravenosaRESUMO
Mesenchymal stem/stromal cells (MSCs) have an immunoregulatory capacity and have been used in different clinical protocols requiring control of the immune response. However, variable results have been obtained, mainly due to the effect of the microenvironment on the induction, increase, and maintenance of MSC immunoregulatory mechanisms. In addition, the importance of cell-cell contact for MSCs to efficiently modulate the immune response has recently been highlighted. Because these interactions would be difficult to achieve in the physiological context, the release of extracellular vesicles (EVs) and their participation as intermediaries of communication between MSCs and immune cells becomes relevant. Therefore, this article focuses on analyzing immunoregulatory mechanisms mediated by cell contact, highlighting the importance of intercellular adhesion molecule-1 (ICAM-1) and the participation of EVs. Moreover, the effects of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), the main cytokines involved in MSC activation, are examined. These cytokines, when used at the appropriate concentrations and times, would promote increases in the expression of immunoregulatory molecules in the cell and allow the acquisition of EVs enriched with these molecules. The establishment of certain in vitro activation guidelines will facilitate the design of conditioning protocols to obtain functional MSCs or EVs in different pathophysiological conditions.
Assuntos
Comunicação Celular , Imunomodulação , Interferon gama/fisiologia , Células-Tronco Mesenquimais/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , HumanosRESUMO
Cell therapy is witnessing a notable shift toward cell-free treatments based on paracrine factors, in particular, towards small extracellular vesicles (sEV), that mimic the functional effect of the parental cells. While numerous sEV-based applications are currently in advanced preclinical stages, their promised translation depends on overcoming the manufacturing hurdles posed by the large-scale production of purified sEV. Unquestionably, the culture medium used with the parental cells plays a key role in the sEV's secretion rate and content. An essential requisite is the use of a serum-, xeno-, and blood-free medium to meet the regulatory entity requirements of clinical-grade sEV's production. Here, we evaluated OxiumTMEXO, a regulatory complying medium, with respect to production capacity and conservation of the EV's characteristics and functionality and the parental cell's phenotype and viability. A comparative study was established with standard DMEM and a commercially available culture medium developed specifically for sEV production. Under similar conditions, OxiumTMEXO displayed a three-fold increase of sEV secretion, with an enrichment of particles ranging between 51 and 200 nm. These results were obtained through direct quantification from the conditioned medium to avoid the isolation method's interference and variability and were compared to the two culture media under evaluation. The higher yield obtained was consistent with several harvest time points (2, 4, and 6 days) and different cell sources, incluiding umbilical cord-, menstrual blood-derived mesenchymal stromal cells and fibroblasts. Additionally, the stem cell phenotype and viability of the parental cell remained unchanged. Furthermore, OxiumTMEXO-sEV showed a similar expression pattern of the vesicular markers CD63, CD9, and CD81, with respect to sEV derived from the other conditions. The in vitro internalization assays in different target cell types and the pharmacokinetic profile of intraperitoneally administered sEV in vivo indicated that the higher EV production rate did not affect the uptake kinetics or the systemic biodistribution in healthy mice. In conclusion, the OxiumTMEXO medium sustains an efficient and robust production of large quantities of sEV, conserving the classic functional properties of internalization into acceptor target cells and biodistribution in vivo, supplying the amount and quality of EVs for the development of cell-free therapies.
RESUMO
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.