Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39115732

RESUMO

We prompted to characterize a wastewater bacterium, Pseudoxanthomonas mexicana GTZY, that efficiently transforms toxic mercury and arsenic, explores its bioremediation capability, and reveals their relevant gene resistance operons. The isolated strain was characterized by its phylogenetic, biochemical, and phenotypic properties. The strain GTZY potentially removed 84.3% of mercury and their mercury volatilization (Hg(II) to Hg(0)) was confirmed using the X-ray film method, and its respective merA gene was PCR amplified. In addition, strain GTZY efficiently removed arsenate (68.5%) and arsenite (63.2%), and showed resistance up to > 175 and > 55 mM, respectively. Their genomic annotations disclosed the linkage of Tn2-transposon and int1 in both ends of mer operon (merAPTR). The co-existence of arsP and arsH proteins in its intrinsic ars operon (arsCPRH) was extremely diverse from its ancestral species. We believe that the mercury resistance-conferring mer operon of P. mexicana GTZY presumably derived horizontally from other species in the reactor, while the arsenic resistance-conferring intrinsic ars operon was highly diversified and evolved from its ancestral species. By considering the potential of the strain GTZY to transform heavy metals, this can be used to recover contaminated sites.

2.
Environ Sci Technol ; 58(29): 13087-13098, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38995999

RESUMO

Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, ∼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.


Assuntos
Tubarões , Poluentes Químicos da Água , Animais , Tubarões/metabolismo , Monitoramento Ambiental , Bahamas , Fluorocarbonos/análise , New York , Cadeia Alimentar
3.
Sci Total Environ ; 947: 174501, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971239

RESUMO

Currently, pollution due to heavy metals, in particular dissolved mercury, is a major concern for society and the environment. This work aims to evaluate the current scenario regarding the removal/elimination of mercury. Mercury removal through adsorption is mainly done through artificial resins and metallic-organic frameworks. In the case of the zinc organic framework, it was able to adsorb Hg2+, reaching an adsorption capacity of 802 mg g-1. As for the Hg(0) the coconut husk was found to have the lowest equilibrium time, 30 min, and the highest adsorption capacity of 956.2 mg g-1. Experimental reports and molecular simulation indicate that the adsorption of mercury and other chemical forms occurs due to electrostatic interactions, ion exchange, precipitation, complexation, chelation, and covalent bonds, according to the material nature. The reported thermodynamic results show that, in most cases, the mercury adsorption has an endothermic nature with enthalpy levels below 40 kJ mol-1. Thermal and chemical regeneration methods lead to a similar number of 5 cycles for different materials. The presence of other ions, in particular cadmium, lead, and copper, generates an antagonistic effect for mercury adsorption. Regarding the other current technologies, it was found that mercury removal is feasible through precipitation, phytoremediation, and marine microalgae; all these methods require constant chemicals or a slow rate of removal according to the conditions. Advanced oxidative processes have noteworthy removal of Hg(0); however, Fenton processes lead to mineralization, which leads to Fe2+ and Fe3+ in solution; sonochemical processes are impossible to scale up at the current technology level; and electrochemical processes consume more energy and require constant changes of the anode and cathode. Overall, it is possible to conclude that the adsorption process remains a more friendly, economical, and greener process in comparison with other processes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39054006

RESUMO

Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.


Assuntos
Reparo do DNA , Ouro , Mercúrio , Mineração , Polimorfismo de Nucleotídeo Único , Humanos , Reparo do DNA/genética , Mercúrio/toxicidade , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Colômbia , Glutationa Transferase/genética , Testes para Micronúcleos , Exposição Ambiental/efeitos adversos , Adulto Jovem
5.
Toxics ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38922104

RESUMO

Mercury is a naturally occurring metal found in various inorganic and organic forms within the environment. Due to its high toxicity, there is global concern regarding human exposure to this element. The combination of high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is commonly used to analyze the different forms of mercury in a sample due to its high sensitivity and ability to selectively detect mercury. However, the traditional HPLC-ICP-MS methods are often criticized for their lengthy analysis times. In this study, we have refined the conventional approach by transitioning to ultra-high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (UHPLC-ICP-MS). This modification has resulted in significant reductions in runtime as well as reagent and argon usage, thereby offering a more rapid, environmentally friendly, and cost-effective method. We successfully adapted an HPLC-ICP-MS method to UHPLC-ICP-MS, achieving the analysis of Hg2+ and MeHg+ within 1 min with a mobile phase consumption of only 0.5 mL and a sample volume of 5.0 µL; this is a major advance compared to HPLC analysis with run times generally between 5 and 10 min. The method's performance was assessed by analyzing muscle and liver tissue samples (serving as reference material) from fish, demonstrating the versatility of the method in relation to different complex matrices.

6.
Toxics ; 12(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38922121

RESUMO

Genetic polymorphisms may influence mercury (Hg) toxicity. The aims of this study were to evaluate individual factors, such as the presence of the GSTP1 rs1695 polymorphism, associated with internal Hg dose and child neurodevelopment in indigenous people from the Brazilian Amazon chronically exposed to Hg. Eighty-two indigenous children were clinically evaluated, hair Hg was measured, and the GSTP1 rs1695 polymorphism was genotyped. The mean age was 4.8 years, the median Hg was 5.5 µg/g, and 93.8% of children exceeded the safe limit (2.0 µg/g). Fish consumption was associated with Hg levels (p = 0.03). The GSTP1 rs1695 A>G polymorphism was in the Hardy-Weinberg equilibrium and the highest prevalence of the GSTP1 AA genotype (80%) was found in Sawré Aboy, which had the highest Hg levels (10 µg/g) among the studied villages. The Hg levels tended to increase over the years in males and in carriers of the GSTP1 AA genotype (0.69 µg/g and 0.86 µg/g, respectively). Nine children failed the neurodevelopmental test, all of whom had Hg > 2.0 µg/g, and 88.9% carried the GSTP1 AA or AG genotypes, previously associated with the highest internal Hg doses and neurocognitive disorders. The genetic counseling of this population is important to identify the individuals at greater risk for neurodevelopmental disorders resulting from chronic Hg exposure.

7.
Ecotoxicology ; 33(4-5): 440-456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847980

RESUMO

Mercury is a highly toxic element present in water, soil, air, and biota. Anthropogenic activities, such as burning fossil fuels, mining, and deforestation, contribute to the presence and mobilization of mercury between environmental compartments. Although current research on mercury pathways has advanced our understanding of the risks associated with human exposure, limited information exists for remote areas with high diversity of fauna, flora, and indigenous communities. This study aims to deepen our understanding of the presence of total mercury in water, sediments, and fish, within aquatic ecosystems of two indigenous territories: Gomataon (Waorani Nationality) and Sinangoé (Ai´Cofán Nationality) in the Ecuadorian Amazon. Our findings indicate that, for most fish (91.5%), sediment (100%) and water (95.3%) samples, mercury levels fall under international limits. For fish, no significant differences in mercury levels were detected between the two communities. However, eight species exceeded recommended global limits, and one surpassed the threshold according to Ecuadorian legislation. Piscivore and omnivore fish exhibited the highest concentrations of total mercury among trophic guilds. Only one water sample from each community's territory exceeded these limits. Total mercury in sediments exhibited greater concentrations in Gomataon than Sinangoé. Greater levels of mercury in sediments were associated with the occurrence of total organic carbon. Considering that members of the communities consume the analyzed fish, an interdisciplinary approach, including isotopic analysis, methylmercury sampling in humans, and mercury monitoring over time, is imperative for a detailed risk assessment of mercury exposure in Amazonian communities.


Assuntos
Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Poluentes Químicos da Água/análise , Equador , Animais , Sedimentos Geológicos/química , Ecossistema
8.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822880

RESUMO

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Assuntos
Golfinhos , Espécies em Perigo de Extinção , Monitoramento Ambiental , Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oceano Atlântico , Golfinhos/metabolismo , Fígado/metabolismo , Rim/metabolismo
9.
Ecotoxicology ; 33(4-5): 425-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700807

RESUMO

Due to their natural history and ecological attributes, turtles are excellent organisms for studies of heavy metal contamination. Turtles have a large geographical distribution, occupy different aquatic habitats, and occupy various trophic levels. The present study investigated mercury bioaccumulation in the carnivorous chelonian Chelus fimbriata (Matamata turtle) and Hg biomagnification in relation to its aquatic food chain in the middle Rio Negro, AM-Brazil. Tissue samples of muscle, carapace and claws were collected from 26 C. fimbriata individuals, as well as collections of autotrophic energy sources found in the turtle's aquatic habitat area. The samples were collected in February-March/2014 and analyzed for THg concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes. The highest THg levels were found in claws (3780 ng.g-1), carapace (3622 ng.g-1) and muscle (403 ng.g-1), which were found to be significantly different [F(2.73) = 49.02 p < 0.01]. However, THg concentrations in muscle tissue were below the consumption threshold indicated by the WHO and Brazilian Health Ministry. The average δ13C and δ15N values in Matamata samples were -31.7‰ and 11.9‰, respectively. The principal energy source sustaining the food chain of C. fimbriata was found to be terrestrial shrubs, with smaller contributions from emergent aquatic herbaceous plants and algae, while δ15N values showed its trophic position to be two levels above the autotrophic energy sources. There was a positive correlation between THg and turtle size, while a significant relationship was found between THg and δ15N, showing strong biomagnification in the food chain of C. fimbriata: y = 0.21x + 0.46; r2 = 0.45; p < 0.001, for which the slope presented a value of 0.21.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Mercúrio , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/metabolismo , Brasil , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Mercúrio/análise , Bioacumulação
10.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693447

RESUMO

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Assuntos
Vaga-Lumes , Histidina , Luciferases de Vaga-Lume , Mutagênese Sítio-Dirigida , Concentração de Íons de Hidrogênio , Animais , Luciferases de Vaga-Lume/metabolismo , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Vaga-Lumes/enzimologia , Histidina/química , Histidina/metabolismo , Cor , Metais Pesados/química , Metais Pesados/metabolismo , Mercúrio/química , Mercúrio/metabolismo , Cádmio/química , Cádmio/metabolismo
11.
Chemosphere ; 361: 142425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797216

RESUMO

Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.


Assuntos
Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Poluentes do Solo , Solo , Mercúrio/análise , Peru , Poluentes do Solo/análise , Solo/química , Plantas/metabolismo , Ecossistema , Florestas , Floresta Úmida
12.
Biosensors (Basel) ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785720

RESUMO

Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 µM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Monitoramento Ambiental/métodos , Colorimetria , Poluentes Químicos da Água/análise , Limite de Detecção , Ouro/química
13.
Toxics ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787105

RESUMO

Artisanal small-scale gold mining (ASGM), an increasingly prevalent activity in South America, generates mercury-contaminated tailings that are often disposed of in the environment, leading to the introduction of mercury into ecosystems and the food web, where it bioaccumulates. Therefore, studying the geochemical processes involved in the desorption and dissolution of mercury in these tailings is essential for critical risk evaluations in the short and long term. For this purpose, sequential extraction procedures (SEPs) can be useful because they help to identify the phases to which Hg is associated, although they also have limitations such as a lack of selectivity and specificity. In this work, we propose a modified four-step SEP: exchangeable mercury (F1), oxidizable mercury (F2), mercury bound to Fe oxides (F3), and strongly bound mercury (F4). To test this adapted sequential extraction method, we evaluated the Hg contamination in mercury-contaminated tailings of the Amazon basin. The results revealed a total mercury concentration of 103 ± 16 mg·kg-1 in the tailings, with a significant portion in F1 (28% of the total), where Hg was bioavailable. The large Hg concentration in F3 (36%) suggested that Fe oxides likely contribute to mercury retention. Together, the SEP results emphasize the urgent need for improved surveillance of gold mining activities and responsible tailings management practices to mitigate environmental contamination and safeguard the health of the Amazon ecosystem.

14.
Mar Pollut Bull ; 202: 116346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604078

RESUMO

Tons of crude oil were found on the Brazilian coast in 2019, and studies assessing its chemical composition are still scarce. This study aimed to develop a new and simple technique of cold vapor generation using infrared irradiation coupled with atomic absorption spectrometry to determine mercury content in sediments contaminated by crude oil. Experimental conditions were evaluated, including formic acid concentration, reactor temperature, and carrier gas flow rate. The accuracy of the method was validated by comparison with mercury contents in a certified reference material (PACS-2). The detection limit was found to be 0.44 µg kg-1. The developed method was applied to determine the total mercury content in marine sediment samples collected from beaches in Ceará State. Mercury concentrations ranged from 0.41 to 0.95 mg kg-1. The proposed method is efficient, simple, low-cost, and adequate for its purpose.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio , Poluição por Petróleo , Poluentes Químicos da Água , Mercúrio/análise , Sedimentos Geológicos/química , Brasil , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Petróleo/análise , Espectrofotometria Atômica
15.
Mar Pollut Bull ; 202: 116384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643585

RESUMO

Micropogonias furnieri and Urophycis brasiliensis are two coastal demersal fish species distributed in the southwestern Atlantic Ocean. Considering that many coastal areas in the southwestern Atlantic Ocean suffer from anthropogenic pressure, the aim of this study was to assess the level of potentially toxic trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sr, V and Zn) in the muscle of coastal species, and evaluated the human health risk related to the consumption of muscle. Mercury, inorganic As (Asi), V, and Se showed a higher contribution to the total THQ. Considering two possible scenarios, Asi represents 1 % or 5 % of the total As, the total THQ was <1 for general population and of some health concerns for fishermen population (Total THQ > 1; 5 % Asi). Consequently these results show the importance of quantifying As species in muscle to generate more reliable risk estimates for human health.


Assuntos
Peixes , Músculos , Oligoelementos , Poluentes Químicos da Água , Animais , Medição de Risco , Oligoelementos/análise , Humanos , Poluentes Químicos da Água/análise , Músculos/química , Oceano Atlântico , Monitoramento Ambiental , Contaminação de Alimentos/análise , América do Sul , Alimentos Marinhos
16.
Environ Monit Assess ; 196(5): 422, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570386

RESUMO

The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.


Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Animais , Mercúrio/análise , Arsênio/análise , Ecossistema , Monitoramento Ambiental , México , Insetos , Poluentes Ambientais/análise , Mineração , Solo
17.
Heliyon ; 10(7): e27526, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586377

RESUMO

Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.

18.
Toxics ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535945

RESUMO

Widespread contamination of the Amazon basin with mercury has been reported to occur since at least the mid-80s due to heavy gold mining activity. Although initial studies have indicated that this may lead to deleterious neurological consequences to the indigenous populations living in the region, further research is needed to better characterize the neurological burden of such long-term exposure. With this aim, a cross-sectional exploratory study has been conducted with the Yanomami indigenous population residing in a northern Amazon region. All participants underwent a structured interview; detailed neurological examination, including assessment for cognitive, motor, coordination, and sensory functions; and laboratorial testing for serum hemoglobin, blood glucose, and methylmercury levels in hair samples. This study enrolled 154 individuals of 30.9 ± 16.8 years of age, of which 56.1% were female. Mean methylmercury levels in hair were 3.9 ± 1.7 µg/g. Methylmercury levels in hair > 6.0 µg/g were found in 10.3%. Among participants with hair methylmercury levels ≥ 6.0 µg/g, the prevalences of peripheral neuropathy and reduced cognitive performance were, respectively, 78.8% (95%CI 15-177%, p = 0.010) and 95.9% (95%CI 16-230.8%, p = 0.012) higher than those of individuals with lower levels. These results suggest that chronic mercury exposure may lead to significant and potentially irreversible neurotoxicity to Yanomami population living in the northern Amazon basin.

19.
Environ Monit Assess ; 196(4): 391, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517570

RESUMO

Although bats are responsible for many ecosystem services on which humans depend, they are frequently exposed to multiple anthropogenic stressors. Heavy metal (HM) exposure is an emerging threat of great significance to bats, yet the toxicity threshold for most metallic elements remains unknown. The greatest diversity of bats worldwide is in the Neotropical region, where ecotoxicological studies are scarce. Thus, this review provides a current overview of the knowledge available on HMs contamination of Neotropical bats. Analysis of the results of 17 articles published between 2000 and 2023 documented a trend of increasing interest in the topic, although it is incipient and in few countries. Of the 226 species known for the Neotropics, 95 have been investigated for metal concentrations. Seven different matrices were used to assess concentrations of heavy metals in tissues, with fur being the subject of eight studies, highlighting the search for non-invasive analysis. Twenty-one HMs were detected in bats, with mercury being the most common. The highest concentrations of this HM were detected in insectivorous/omnivorous bats, highlighting its magnification in this trophic guild compared to frugivorous bats. Copper, lead, and cadmium did not differ significantly among the other trophic guilds. This review shows that there is knowledge about concentrations of heavy metals in several Neotropical species, but knowledge about the impact of these concentrations on bat health is limited, which highlights the need for research to determine critical concentrations that cause damage to bat health, and that guide conservation actions for their populations, as well as environmental monitoring actions for these pollutants.


Assuntos
Quirópteros , Metais Pesados , Animais , Humanos , Monitoramento Ambiental , Ecossistema , Ecotoxicologia , Metais Pesados/toxicidade
20.
Toxics ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535926

RESUMO

Despite legal safeguards, the Yanomami community faces challenges such as unauthorized incursions by gold miners, resulting in environmental degradation, particularly from mercury. This jeopardizes the health and food security of indigenous individuals, especially due to the consumption of contaminated fish. Ethnic and racial disparities persist in indigenous healthcare, marked by troubling health indicators such as malnutrition, anemia, and infectious diseases. This cross-sectional study, conducted in October 2022 in the Yanomami Indigenous Territory in the Amazon Forest, Brazil, presented clinical, laboratory, and neurodevelopmental findings in Yanomami children chronically exposed to methylmercury. The results revealed that Yanomami children exhibited weights and heights below expectations (median Z-scores of -1.855 for weight for age and -2.7 for height for age), a high prevalence of anemia (25%), low vaccination coverage (15%), and low IQ (average 68.6). The Total Hair Mercury (Total Hg) levels ranged from 0.16 µg/g to 10.20 µg/g (mean: 3.30 µg/g; median: 3.70 µg/g). Of 117 children tested, 93 children (79.4%) had levels ≥ 2.0 µg/g (had no significant difference between sex). Among the 58 children for whom it was possible to estimate the Total Intelligence Quotient (TIQ), the average value was 68.6, ranging from 42 to 92 points (median: 69.5; standard deviation: 10.5). Additionally, the lowest score on the IQ test was associated with 5 times the risk of having high levels of mercury in their hair, 2,5 fold the risk of having an older age, and almost 8 times the risk of consuming fish, adjusting for nut consumption. Notwithstanding the study's limitations, results suggest that mercury contamination from illegal mining activities on indigenous lands may negatively impact neurodevelopment in older indigenous children, particularly those fish consumers, despite the inherent benefits of fish consumption. Addressing other socio-environmental concerns is crucial for enhancing the overall health of the population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA